In this paper, we propose a time-delayed West Nile virus (WNv) model with impulsive culling of mosquitoes. The mathematical difficulty lies in how to choose a suitable phase space and deal with the interaction of delay and impulse. By the recent theory developed in [
Citation: |
Figure 4. The contour plots of $ \mathcal {R}_0 $ with respect to $ T $ and $ p $ with different biting rate $ \beta $ equal to (a) 0.03, (b) 0.05, (c) 0.07. Other parameters are chosen as in Figure 1
[1] |
S. Ai, J. Li and J. Lu, Mosquito-stage-structured malaria models and their global dynamics, SIAM J. Appl. Math., 72 (2012), 1213-1237.
doi: 10.1137/110860318.![]() ![]() ![]() |
[2] |
N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436.
doi: 10.1007/s00285-006-0015-0.![]() ![]() ![]() |
[3] |
Z. Bai and X.-Q. Zhao, Basic reproduction ratios for periodic and time-delayed compartmental models with impulses, J. Math. Biol., 80 (2020), 1095-1117.
doi: 10.1007/s00285-019-01452-2.![]() ![]() ![]() |
[4] |
G. Ballinger and X. Liu, Existence, uniqueness and boundedness results for impulsive delay differential equations, Appl. Anal., 74 (2000), 71-93.
doi: 10.1080/00036810008840804.![]() ![]() ![]() |
[5] |
K. W. Blayneh, A. B. Gumel, S. Lenhart and T. Clayton, Backward bifurcation and optimal control in transmission dynamics of West Nile virus, Bull. Math. Biol., 72 (2010), 1006-1028.
doi: 10.1007/s11538-009-9480-0.![]() ![]() ![]() |
[6] |
C. Bowman, A. B. Gumel, P. van den Driessche, J. Wu and H. Zhu, A mathematical model for assessing control strategies against West Nile virus, Bull. Math. Biol., 67 (2005), 1107-1133.
doi: 10.1016/j.bulm.2005.01.002.![]() ![]() ![]() |
[7] |
G. Fan, J. Liu, P. van den Driessche, J. Wu and H. Zhu, The impact of maturation delay of mosquitoes on the transmission of West Nile virus, Math. Biosci., 228 (2010), 119-126.
doi: 10.1016/j.mbs.2010.08.010.![]() ![]() ![]() |
[8] |
S. Gao, L. Chen and Z. Teng, Impulsive vaccination of an SEIRS model with time delay and varying total population size, Bull. Math. Biol., 69 (2007), 731-745.
![]() |
[9] |
S. A. Gourley, R. Liu and J. Wu, Eradicating vector-borne diseases via age-structured culling, J. Math. Biol., 54 (2007), 309-335.
doi: 10.1007/s00285-006-0050-x.![]() ![]() ![]() |
[10] |
X. Hu, Y. Liu and J. Wu, Culling structured hosts to eradicate vector-borne diseases, Math. Biosci. Eng., 6 (2009), 301-319.
doi: 10.3934/mbe.2009.6.301.![]() ![]() ![]() |
[11] |
J. Jiang and Z. Qiu, The complete classification for dynamics in a nine-dimensional West Nile virus model, SIAM J. Appl. Math., 69 (2009), 1205-1227.
doi: 10.1137/070709438.![]() ![]() ![]() |
[12] |
J. Li, Simple stage-structured models for wild and transgenic mosquito populations, J. Difference Equ. Appl., 15 (2009), 327-347.
doi: 10.1080/10236190802566491.![]() ![]() ![]() |
[13] |
X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40.
doi: 10.1002/cpa.20154.![]() ![]() ![]() |
[14] |
X. Liu, X. Shen and Y. Zhang, A comparison principle and stability for large-scale impulsive delay differential systems, ANZIAM J., 47 (2005), 203-235.
doi: 10.1017/S1446181100009998.![]() ![]() ![]() |
[15] |
Y. Lou and X.-Q. Zhao, A theoretical approach to understanding population dynamics with seasonal developmental durations, J. Nonlinear Sci., 27 (2017), 573-603.
doi: 10.1007/s00332-016-9344-3.![]() ![]() ![]() |
[16] |
D. Nash, F. Mostashari and A. Fine, The outbreak of West Nile virus infection in the New York City area in 1999, N. Engl. J. Med., 344 (2001), 1807-1814.
doi: 10.1056/NEJM200106143442401.![]() ![]() |
[17] |
S. Ruan, D. Xiao and J. C. Beier, On the delayed Ross-Macdonald model for malaria transmission, Bull. Math. Biol., 70 (2008), 1098-1114.
doi: 10.1007/s11538-007-9292-z.![]() ![]() ![]() |
[18] |
O. S. Sisodiya, O. P. Misra and J. Dhar, Dynamics of cholera epidemics with impulsive vaccination and disinfection, Math. Biosci., 298 (2018), 46-57.
doi: 10.1016/j.mbs.2018.02.001.![]() ![]() ![]() |
[19] |
H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.
doi: 10.1137/080732870.![]() ![]() ![]() |
[20] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6.![]() ![]() ![]() |
[21] |
F.-B. Wang, R. Wu and X.-Q. Zhao, A West Nile virus transmission model with periodic incubation periods, SIAM J. Appl. Dyn. Syst., 18 (2019), 1498-1535.
doi: 10.1137/18M1236162.![]() ![]() ![]() |
[22] |
X. Wang and X.-Q. Zhao, A periodic vector-bias malaria model with incubation period, SIAM J. Appl. Math., 77 (2017), 181-201.
doi: 10.1137/15M1046277.![]() ![]() ![]() |
[23] |
M. J. Wonham, T. de-Camino-Beck and M. A. Lewis, An epidemiological model for West Nile virus: Invasion analysis and control applications, Proc. R. Soc. Lond. B., 271 (2004), 501-507.
doi: 10.1098/rspb.2003.2608.![]() ![]() |
[24] |
X. Xu, Y. Xiao and R. A. Cheke, Models of impulsive culling of mosquitoes to interrupt transmission of West Nile virus to birds, Appl. Math. Model., 39 (2015), 3549-3568.
doi: 10.1016/j.apm.2014.10.072.![]() ![]() ![]() |
[25] |
Z. Yang, C. Huang and X. Zou, Effect of impulsive controls in a model system for age-structured population over a patchy environment, J. Math. Biol., 76 (2018), 1387-1419.
doi: 10.1007/s00285-017-1172-z.![]() ![]() ![]() |
[26] |
T. Zhang and X.-Q. Zhao, Mathematical modeling for schistosomiasis with seasonal influence: A case study in Hubei, China, SIAM J. Appl. Dyn. Syst., 19 (2020), 1438-1471.
doi: 10.1137/19M1280259.![]() ![]() ![]() |
[27] |
X.-Q. Zhao, Basic reproduction ratios for periodic compartmental models with time delay, J. Dyn. Diff. Equat., 29 (2017), 67-82.
doi: 10.1007/s10884-015-9425-2.![]() ![]() ![]() |
[28] |
W. Zhou, Y. Xiao and R. A. Cheke, A threshold policy to interrupt transmission of West Nile Virus to birds, Appl. Math. Model., 40 (2016), 8794-8809.
doi: 10.1016/j.apm.2016.05.040.![]() ![]() ![]() |
[29] |
W. Zhou, Y. Xiao and J. M. Heffernan, A threshold policy to curb WNV transmission to birds with seasonality, Nonlinear Anal. Real World Appl., 59 (2021), 24pp.
doi: 10.1016/j.nonrwa.2020.103273.![]() ![]() ![]() |
Comparison of the long-term behavior of infectious mosquitoes and birds in different scenarios: culling and without culling.
Sensitivity analysis of
The curve of
The contour plots of