doi: 10.3934/dcdsb.2021240
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Large time behavior in a predator-prey system with pursuit-evasion interaction

School of Mathematics Renmin University of China Beijing, 100872, China

* Corresponding author: Yuanyuan Ke

Received  June 2021 Revised  August 2021 Early access October 2021

This work considers a pursuit-evasion model
$\begin{equation} \left\{ \begin{split} &u_t = \Delta u-\chi\nabla\cdot(u\nabla w)+u(\mu-u+av),\\ &v_t = \Delta v+\xi\nabla\cdot(v\nabla z)+v(\lambda-v-bu),\\ &w_t = \Delta w-w+v,\\ &z_t = \Delta z-z+u\\ \end{split} \right. \ \ \ \ \ (1) \end{equation}$
with positive parameters
$ \chi $
,
$ \xi $
,
$ \mu $
,
$ \lambda $
,
$ a $
and
$ b $
in a bounded domain
$ \Omega\subset\mathbb{R}^N $
(
$ N $
is the dimension of the space) with smooth boundary. We prove that if
$ a<2 $
and
$ \frac{N(2-a)}{2(C_{\frac{N}{2}+1})^{\frac{1}{\frac{N}{2}+1}}(N-2)_+}>\max\{\chi,\xi\} $
, (1) possesses a global bounded classical solution with a positive constant
$ C_{\frac{N}{2}+1} $
corresponding to the maximal Sobolev regularity. Moreover, it is shown that if
$ b\mu<\lambda $
, the solution (
$ u,v,w,z $
) converges to a spatially homogeneous coexistence state with respect to the norm in
$ L^\infty(\Omega) $
in the large time limit under some exact smallness conditions on
$ \chi $
and
$ \xi $
. If
$ b\mu>\lambda $
, the solution converges to (
$ \mu,0,0,\mu $
) with respect to the norm in
$ L^\infty(\Omega) $
as
$ t\rightarrow \infty $
under some smallness assumption on
$ \chi $
with arbitrary
$ \xi $
.
Citation: Dayong Qi, Yuanyuan Ke. Large time behavior in a predator-prey system with pursuit-evasion interaction. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021240
References:
[1]

P. Amorim and B. Telch, A chemotaxis predator-prey model with indirect pursuit-evasion dynamics and parabolic signal, J. Math. Anal. Appl., 500 (2021), 27pp. doi: 10.1016/j.jmaa.2021.125128.  Google Scholar

[2]

P. AmorimB. Telch and L. M. Villada, A reaction-diffusion predator-prey model with pursuit, evasion, and nonlocal sensing, Math. Biosci. Eng., 16 (2019), 5114-5145.  doi: 10.3934/mbe.2019257.  Google Scholar

[3]

X. Cao, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source, J. Math. Anal. Appl., 412 (2014), 181-188.  doi: 10.1016/j.jmaa.2013.10.061.  Google Scholar

[4]

T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076.  doi: 10.1088/0951-7715/21/5/009.  Google Scholar

[5]

T. Goudon and L. Urrutia, Analysis of kinetic and macroscopic models of pursuit-evasion dynamics, Commun. Math. Sci., 14 (2016), 2253-2286.  doi: 10.4310/CMS.2016.v14.n8.a7.  Google Scholar

[6]

M. A. Herrero and J. J. L. Velázques, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633-683.   Google Scholar

[7]

M. Hieber and J. Prüss, Heat kernels and maximal Lp-Lq estimate for parabolic evolution equations, Comm. Par. Differ. Equns., 22 (1997), 1647-1669.  doi: 10.1080/03605309708821314.  Google Scholar

[8]

S. IshidaK. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differ. Equns., 256 (2014), 2993-3010.  doi: 10.1016/j.jde.2014.01.028.  Google Scholar

[9]

Y. Jia and P. Xue, Effects of the self- and cross-diffusion on positive steady states for a generalized predator-prey system, Nonlinear Anal. Real World Appl., 32 (2016), 229-241.  doi: 10.1016/j.nonrwa.2016.04.012.  Google Scholar

[10]

P. Kareiva and G. Odell, Swarms of predators exhibit 'preytaxis' if individual predators use area-restricted search, The American Naturalist, 130 (1987), 233-270.  doi: 10.1086/284707.  Google Scholar

[11]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Bio., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[12]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, Izdat. "Nauka", Moscow 1967,736 pp.  Google Scholar

[13]

D. Li, Global stability in a multi-dimensional predator-prey system with prey-taxis, Discrete Contin. Dyn. Syst., 41 (2021), 1681-1705.  doi: 10.3934/dcds.2020337.  Google Scholar

[14]

G. LiY. Tao and M. Winkler, Large time behavior in a predator-prey system with indirect pursuit-evasion interaction, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 4383-4396.  doi: 10.3934/dcdsb.2020102.  Google Scholar

[15]

Y. Lou and W. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differ. Equns., 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[16]

Q. Meng and L. Yang, Steady state in a cross-diffusion predator-prey model with the Beddington-DeAngelis functional response, Nonlinear Anal. Real World Appl., 45 (2019), 401-413.  doi: 10.1016/j.nonrwa.2018.07.012.  Google Scholar

[17]

Y. Tao and Z. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models. Methods Appl. Sci., 23 (2013), 1-36.  doi: 10.1142/S0218202512500443.  Google Scholar

[18]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equns., 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[19]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differ. Equns., 252 (2012), 2520-2543.  doi: 10.1016/j.jde.2011.07.010.  Google Scholar

[20]

Y. Tao and M. Winkler, Global smooth solvability of a parabolic-elliptic nutrient taxis system in domains of arbitrary dimension, J. Differ. Equns., 267 (2019), 388-406.  doi: 10.1016/j.jde.2019.01.014.  Google Scholar

[21]

B. Telch and L. M. Villada, A reaction-diffusion predator-prey model with pursuit, evasion, and nonlocal sensing, Math. Biosci. Eng., 16 (2019), 5114-5145.  doi: 10.3934/mbe.2019257.  Google Scholar

[22]

M. A. TsyganovJ. BrindleyA. V. Holden and V. N. Biktashev, Quasi-soliton interaction of pursuit-evasion waves in a predator-prey system, Phys. Rev. Lett., 91 (2003), 218102.   Google Scholar

[23]

Y. TyutyunovL. Titova and R. Arditi, A minimal model of pursuit-evasion in a predator-prey system, Math. Model. Nat. Phenom., 2 (2007), 122-134.  doi: 10.1051/mmnp:2008028.  Google Scholar

[24]

J. WangS. Wu and J. Shi, Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 1273-1289.  doi: 10.3934/dcdsb.2020162.  Google Scholar

[25]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Par. Differ. Equns., 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.  Google Scholar

[26]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures. Appl., 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[27]

M. Winkler, Asymptotic homogenization in a three-dimensional nutrient taxis-system involving food-supported proliferation, J. Differ. Equns., 263 (2017), 4826-4869.  doi: 10.1016/j.jde.2017.06.002.  Google Scholar

[28]

P. Xue, Y. Jia, C. Ren and X. Li, Non-constant positive solutions of a general Gause-type predator-prey system with self- and cross-diffusions, Math. Model. Nat. Phenom., 16 (2021), 15pp. doi: 10.1051/mmnp/2021017.  Google Scholar

[29]

J. ZhengY. LiG. Bao and X. Zou, A new result for global existence and boundedness of solutions to a parabolic–parabolic Keller–Segel system with logistic source, J. Math. Anal. Appl., 462 (2018), 1-25.  doi: 10.1016/j.jmaa.2018.01.064.  Google Scholar

show all references

References:
[1]

P. Amorim and B. Telch, A chemotaxis predator-prey model with indirect pursuit-evasion dynamics and parabolic signal, J. Math. Anal. Appl., 500 (2021), 27pp. doi: 10.1016/j.jmaa.2021.125128.  Google Scholar

[2]

P. AmorimB. Telch and L. M. Villada, A reaction-diffusion predator-prey model with pursuit, evasion, and nonlocal sensing, Math. Biosci. Eng., 16 (2019), 5114-5145.  doi: 10.3934/mbe.2019257.  Google Scholar

[3]

X. Cao, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source, J. Math. Anal. Appl., 412 (2014), 181-188.  doi: 10.1016/j.jmaa.2013.10.061.  Google Scholar

[4]

T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076.  doi: 10.1088/0951-7715/21/5/009.  Google Scholar

[5]

T. Goudon and L. Urrutia, Analysis of kinetic and macroscopic models of pursuit-evasion dynamics, Commun. Math. Sci., 14 (2016), 2253-2286.  doi: 10.4310/CMS.2016.v14.n8.a7.  Google Scholar

[6]

M. A. Herrero and J. J. L. Velázques, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633-683.   Google Scholar

[7]

M. Hieber and J. Prüss, Heat kernels and maximal Lp-Lq estimate for parabolic evolution equations, Comm. Par. Differ. Equns., 22 (1997), 1647-1669.  doi: 10.1080/03605309708821314.  Google Scholar

[8]

S. IshidaK. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differ. Equns., 256 (2014), 2993-3010.  doi: 10.1016/j.jde.2014.01.028.  Google Scholar

[9]

Y. Jia and P. Xue, Effects of the self- and cross-diffusion on positive steady states for a generalized predator-prey system, Nonlinear Anal. Real World Appl., 32 (2016), 229-241.  doi: 10.1016/j.nonrwa.2016.04.012.  Google Scholar

[10]

P. Kareiva and G. Odell, Swarms of predators exhibit 'preytaxis' if individual predators use area-restricted search, The American Naturalist, 130 (1987), 233-270.  doi: 10.1086/284707.  Google Scholar

[11]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Bio., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[12]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, Izdat. "Nauka", Moscow 1967,736 pp.  Google Scholar

[13]

D. Li, Global stability in a multi-dimensional predator-prey system with prey-taxis, Discrete Contin. Dyn. Syst., 41 (2021), 1681-1705.  doi: 10.3934/dcds.2020337.  Google Scholar

[14]

G. LiY. Tao and M. Winkler, Large time behavior in a predator-prey system with indirect pursuit-evasion interaction, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 4383-4396.  doi: 10.3934/dcdsb.2020102.  Google Scholar

[15]

Y. Lou and W. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differ. Equns., 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[16]

Q. Meng and L. Yang, Steady state in a cross-diffusion predator-prey model with the Beddington-DeAngelis functional response, Nonlinear Anal. Real World Appl., 45 (2019), 401-413.  doi: 10.1016/j.nonrwa.2018.07.012.  Google Scholar

[17]

Y. Tao and Z. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models. Methods Appl. Sci., 23 (2013), 1-36.  doi: 10.1142/S0218202512500443.  Google Scholar

[18]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equns., 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[19]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differ. Equns., 252 (2012), 2520-2543.  doi: 10.1016/j.jde.2011.07.010.  Google Scholar

[20]

Y. Tao and M. Winkler, Global smooth solvability of a parabolic-elliptic nutrient taxis system in domains of arbitrary dimension, J. Differ. Equns., 267 (2019), 388-406.  doi: 10.1016/j.jde.2019.01.014.  Google Scholar

[21]

B. Telch and L. M. Villada, A reaction-diffusion predator-prey model with pursuit, evasion, and nonlocal sensing, Math. Biosci. Eng., 16 (2019), 5114-5145.  doi: 10.3934/mbe.2019257.  Google Scholar

[22]

M. A. TsyganovJ. BrindleyA. V. Holden and V. N. Biktashev, Quasi-soliton interaction of pursuit-evasion waves in a predator-prey system, Phys. Rev. Lett., 91 (2003), 218102.   Google Scholar

[23]

Y. TyutyunovL. Titova and R. Arditi, A minimal model of pursuit-evasion in a predator-prey system, Math. Model. Nat. Phenom., 2 (2007), 122-134.  doi: 10.1051/mmnp:2008028.  Google Scholar

[24]

J. WangS. Wu and J. Shi, Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 1273-1289.  doi: 10.3934/dcdsb.2020162.  Google Scholar

[25]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Par. Differ. Equns., 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.  Google Scholar

[26]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures. Appl., 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[27]

M. Winkler, Asymptotic homogenization in a three-dimensional nutrient taxis-system involving food-supported proliferation, J. Differ. Equns., 263 (2017), 4826-4869.  doi: 10.1016/j.jde.2017.06.002.  Google Scholar

[28]

P. Xue, Y. Jia, C. Ren and X. Li, Non-constant positive solutions of a general Gause-type predator-prey system with self- and cross-diffusions, Math. Model. Nat. Phenom., 16 (2021), 15pp. doi: 10.1051/mmnp/2021017.  Google Scholar

[29]

J. ZhengY. LiG. Bao and X. Zou, A new result for global existence and boundedness of solutions to a parabolic–parabolic Keller–Segel system with logistic source, J. Math. Anal. Appl., 462 (2018), 1-25.  doi: 10.1016/j.jmaa.2018.01.064.  Google Scholar

[1]

Genglin Li, Youshan Tao, Michael Winkler. Large time behavior in a predator-prey system with indirect pursuit-evasion interaction. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4383-4396. doi: 10.3934/dcdsb.2020102

[2]

Mihaela Negreanu. Global existence and asymptotic behavior of solutions to a chemotaxis system with chemicals and prey-predator terms. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3335-3356. doi: 10.3934/dcdsb.2020064

[3]

Weike Wang, Yucheng Wang. Global existence and large time behavior for the chemotaxis–shallow water system in a bounded domain. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6379-6409. doi: 10.3934/dcds.2020284

[4]

Guoqiang Ren, Bin Liu. Global existence and convergence to steady states for a predator-prey model with both predator- and prey-taxis. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021136

[5]

Dongfen Bian, Boling Guo. Global existence and large time behavior of solutions to the electric-magnetohydrodynamic equations. Kinetic & Related Models, 2013, 6 (3) : 481-503. doi: 10.3934/krm.2013.6.481

[6]

Nguyen Huu Du, Nguyen Thanh Dieu, Tran Dinh Tuong. Dynamic behavior of a stochastic predator-prey system under regime switching. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3483-3498. doi: 10.3934/dcdsb.2017176

[7]

Canan Çelik. Dynamical behavior of a ratio dependent predator-prey system with distributed delay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 719-738. doi: 10.3934/dcdsb.2011.16.719

[8]

Nguyen Huu Du, Nguyen Hai Dang. Asymptotic behavior of Kolmogorov systems with predator-prey type in random environment. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2693-2712. doi: 10.3934/cpaa.2014.13.2693

[9]

Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189

[10]

Zhong Li, Maoan Han, Fengde Chen. Global stability of a predator-prey system with stage structure and mutual interference. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 173-187. doi: 10.3934/dcdsb.2014.19.173

[11]

Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1159-1167. doi: 10.3934/dcdsb.2019214

[12]

Xiaoli Liu, Dongmei Xiao. Bifurcations in a discrete time Lotka-Volterra predator-prey system. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 559-572. doi: 10.3934/dcdsb.2006.6.559

[13]

Xinjian Wang, Guo Lin. Asymptotic spreading for a time-periodic predator-prey system. Communications on Pure & Applied Analysis, 2019, 18 (6) : 2983-2999. doi: 10.3934/cpaa.2019133

[14]

Ovide Arino, Manuel Delgado, Mónica Molina-Becerra. Asymptotic behavior of disease-free equilibriums of an age-structured predator-prey model with disease in the prey. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 501-515. doi: 10.3934/dcdsb.2004.4.501

[15]

Inkyung Ahn, Wonlyul Ko, Kimun Ryu. Asymptotic behavior of a ratio-dependent predator-prey system with disease in the prey. Conference Publications, 2013, 2013 (special) : 11-19. doi: 10.3934/proc.2013.2013.11

[16]

Yu Ma, Chunlai Mu, Shuyan Qiu. Boundedness and asymptotic stability in a two-species predator-prey chemotaxis model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021218

[17]

Dan Li. Global stability in a multi-dimensional predator-prey system with prey-taxis. Discrete & Continuous Dynamical Systems, 2021, 41 (4) : 1681-1705. doi: 10.3934/dcds.2020337

[18]

Chao Deng, Tong Li. Global existence and large time behavior of a 2D Keller-Segel system in logarithmic Lebesgue spaces. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 183-195. doi: 10.3934/dcdsb.2018093

[19]

Peter A. Braza. Predator-Prey Dynamics with Disease in the Prey. Mathematical Biosciences & Engineering, 2005, 2 (4) : 703-717. doi: 10.3934/mbe.2005.2.703

[20]

Jie Zhao. Large time behavior of solution to quasilinear chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1737-1755. doi: 10.3934/dcds.2020091

2020 Impact Factor: 1.327

Article outline

[Back to Top]