doi: 10.3934/dcdsb.2021245
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Maximum principle for the optimal harvesting problem of a size-stage-structured population model

1. 

College of science, Qingdao University of Technology, Qingdao, 266033, China

2. 

School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, China

*Corresponding author: Miaomiao Chen

Received  March 2021 Revised  August 2021 Early access October 2021

Fund Project: This work is supported by the National Natural Science Foundation of China (Nos. 11771044, 11871007 and 12171039)

The optimal harvesting of biological resources, which is directly relevant to sustainable development, has attracted more attention. In this paper, we first prove the existence and uniqueness of generalized solution of a size-stage-structured population model while the optimal harvesting effort is discontinuous. Next, we demonstrate the existence of the optimal harvesting policy. Further, based on the idea of the Pontryagin's maximum principle of the optimal control problem in ordinary differential equations, we derive the maximum principle describing the optimal control. Finally, the dynamical behavior of the population is simulated by solving the corresponding optimality system numerically with an algorithm based on the method of backward Euler implicit finite-difference approximation. The numerical simulations indicate harvesting activity will reduce the quantity of the population and that increasing harvesting cost will result in less adult harvested. This provides guideline of implementing harvesting tactic to guarantee the persistence of the population.

Citation: Miaomiao Chen, Rong Yuan. Maximum principle for the optimal harvesting problem of a size-stage-structured population model. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021245
References:
[1]

B. AinsebaZ. FengM. Iannelli and F. A. Milner, Control strategies for TB epidemics, SIAM J. Appl. Math., 77 (2017), 82-107.  doi: 10.1137/15M1048719.  Google Scholar

[2]

L. H. R. Alvarez and L. A. Shepp, Optimal harvesting of stochastically fluctuating populations, J. Math. Biol., 37 (1998), 155-177.  doi: 10.1007/s002850050124.  Google Scholar

[3]

J. R. Beddington and R. M. May, Harvesting natural populations in a randomly fluctuating environment, Science, 197 (1977), 463-465.  doi: 10.1126/science.197.4302.463.  Google Scholar

[4]

K. BelkhodjaA. Moussaoui and M. A. Aziz Alaoui, Optimal harvesting and stability for a prey-predator model, Nonlinear Anal. Real World Appl., 39 (2018), 321-336.  doi: 10.1016/j.nonrwa.2017.07.004.  Google Scholar

[5]

M. E. Gurtin and L. F. Murphy, On the optimal harvesting of persistent age-structured populations, J. Math. Biol., 13 (1981/82), 131-148.  doi: 10.1007/BF00275209.  Google Scholar

[6]

J. K. Hale, Ordinary Differential Equations, 2$^nd$ edition, Robert E. Krieger Publishing Co., Inc., Huntington, N. Y., 1980.  Google Scholar

[7]

A. IshakuA. M. GazaliS. A. Abdullahi and N. Hussaini, Analysis and optimal control of an HIV model based on CD4 count, J. Math. Biol., 81 (2020), 209-241.  doi: 10.1007/s00285-020-01508-8.  Google Scholar

[8]

E. JungS. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model, Discrete Contin. Dyn. Syst. Ser. B, 2 (2002), 473-482.  doi: 10.3934/dcdsb.2002.2.473.  Google Scholar

[9]

N. Kato, Optimal harvesting for nonlinear size-structured population dynamics, J. Math. Anal. Appl., 342 (2008), 1388-13988.  doi: 10.1016/j.jmaa.2008.01.010.  Google Scholar

[10]

N. Kato, Linear size-structured population models with spacial diffusion and optimal harvesting problems, Math. Model. Nat. Phenom., 9 (2014), 122-130.  doi: 10.1051/mmnp/20149408.  Google Scholar

[11]

M. KloostermanS. A. Campbell and F. J. Poulin, An NPZ model with state-dependent delay due to size-structure in juvenile zooplankton, SIAM J. Appl. Math., 76 (2016), 551-577.  doi: 10.1137/15M1021271.  Google Scholar

[12]

H. D. KwonJ. Lee and M. Yoon, An age-structured model with immune response of HIV infection: Modeling and optimal control approach, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 153-172.  doi: 10.3934/dcdsb.2014.19.153.  Google Scholar

[13]

Y. LiZ. ZhangY. Lv and Z. Liu, Optimal harvesting for a size-stage-structured population model, Nonlinear Anal. Real World Appl., 44 (2018), 616-630.  doi: 10.1016/j.nonrwa.2018.06.001.  Google Scholar

[14]

M. Liu and C. Bai, Optimal harvesting of a stochastic delay competitive model, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1493-1508.  doi: 10.3934/dcdsb.2017071.  Google Scholar

[15]

P. Magal and Z. Zhang, Competition for light in forest population dynamics: From computer simulator to mathematical model, J. Theoret. Biol., 419 (2017), 290-304.  doi: 10.1016/j.jtbi.2017.02.025.  Google Scholar

[16]

P. Magal and Z. Zhang, A system of state-dependent delay differential equation modelling forest growth II: Boundedness of solutions, Nonlinear Anal. Real World Appl., 42 (2018), 334-352.  doi: 10.1016/j.nonrwa.2018.01.002.  Google Scholar

[17]

T. McMahon, Size and shape in biology: Elastic criteria impose limits on biological proportions, and consequently on metabolic rates, Science, 179 (1973), 1201-1204.   Google Scholar

[18]

X. MengNiklas L. P. LundströmM. Bodin and Å ke Brännström, Dynamics and management of stage-structured fish stocks, Bull. Math. Biol., 75 (2013), 1-23.  doi: 10.1007/s11538-012-9789-y.  Google Scholar

[19]

J. A. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations, Springer, 1986. Google Scholar

[20]

R. M. Nisbet and W. S. C. Gurney, The systematic formulation of population models for insects with dynamically varying instar duration, Theoret. Population Biol., 23 (1983), 114-135.  doi: 10.1016/0040-5809(83)90008-4.  Google Scholar

[21]

Y. PeiM. ChenX. Liang and C. Li, Model-based on fishery management systems with selective harvest policies, Math. Comput. Simulation, 156 (2019), 377-395.  doi: 10.1016/j.matcom.2018.08.009.  Google Scholar

[22]

H. L. Smith, Reduction of structured population models to threshold-type delay equations and functional-differential equations: A case study, Math. Biosci., 113 (1993), 1-23.  doi: 10.1016/0025-5564(93)90006-V.  Google Scholar

[23]

H. L. Smith, Existence and uniqueness of global solutions for a size-structured model of an insect population with variable instar duration, Rocky Mountain J. Math., 24 (1994), 311-334.  doi: 10.1216/rmjm/1181072468.  Google Scholar

[24]

H. L. Smith, A structured population model and a related functional differential equation: Global attractors and uniform persistence, J. Dynam. Differential Equations, 6 (1994), 71-99.  doi: 10.1007/BF02219189.  Google Scholar

[25]

H. L. Smith, Equivalent dynamics for a structured population model and a related functional-differential equation, Rocky Mountain J. Math., 25 (1995), 491-499.  doi: 10.1216/rmjm/1181072298.  Google Scholar

[26]

X. Song and L. Chen, Optimal harvesting and stability for a two-species competitive system with stage structure, Math. Biosci., 170 (2001), 173-186.  doi: 10.1016/S0025-5564(00)00068-7.  Google Scholar

[27] H. R. Thieme, Mathematics in Population Biology, Princeton University Press, NJ, 2003.   Google Scholar
[28]

P. Waltman, Deterministic Threshold Models in the Theory of Epidemics, Springer-Verlag, Berlin-New York, 1974.  Google Scholar

[29]

Z. Wang, Optimal harvesting for age distribution and weighted size competitive species with diffusion, J. Comput. Appl. Math., 328 (2018), 485-496.  doi: 10.1016/j.cam.2017.07.026.  Google Scholar

[30]

E. E. Werner and J. F. Gilliam, The ontogenetic niche and species interactions in size-structured populations, Annu. Rev. Ecol. Syst., 15 (1984), 393-425.  doi: 10.1146/annurev.es.15.110184.002141.  Google Scholar

[31]

A. ZenatiM. Chakir and M. Tadjine, Global stability analysis and optimal control therapy of blood cell production process (hematopoiesis) in acute myeloid leukemia, J. Theoret. Biol., 458 (2018), 15-30.  doi: 10.1016/j.jtbi.2018.09.001.  Google Scholar

[32]

F. ZhangR. Liu and Y. Chen, Optimal harvesting in a periodic food chain model with size structures in predators, Appl. Math. Optim., 75 (2017), 229-251.  doi: 10.1007/s00245-016-9331-y.  Google Scholar

[33]

X. ZhangZ. Shuai and K. Wang, Optimal impulsive harvesting policy for single population, Nonlinear Anal. Real World Appl., 4 (2003), 639-651.  doi: 10.1016/S1468-1218(02)00084-6.  Google Scholar

show all references

References:
[1]

B. AinsebaZ. FengM. Iannelli and F. A. Milner, Control strategies for TB epidemics, SIAM J. Appl. Math., 77 (2017), 82-107.  doi: 10.1137/15M1048719.  Google Scholar

[2]

L. H. R. Alvarez and L. A. Shepp, Optimal harvesting of stochastically fluctuating populations, J. Math. Biol., 37 (1998), 155-177.  doi: 10.1007/s002850050124.  Google Scholar

[3]

J. R. Beddington and R. M. May, Harvesting natural populations in a randomly fluctuating environment, Science, 197 (1977), 463-465.  doi: 10.1126/science.197.4302.463.  Google Scholar

[4]

K. BelkhodjaA. Moussaoui and M. A. Aziz Alaoui, Optimal harvesting and stability for a prey-predator model, Nonlinear Anal. Real World Appl., 39 (2018), 321-336.  doi: 10.1016/j.nonrwa.2017.07.004.  Google Scholar

[5]

M. E. Gurtin and L. F. Murphy, On the optimal harvesting of persistent age-structured populations, J. Math. Biol., 13 (1981/82), 131-148.  doi: 10.1007/BF00275209.  Google Scholar

[6]

J. K. Hale, Ordinary Differential Equations, 2$^nd$ edition, Robert E. Krieger Publishing Co., Inc., Huntington, N. Y., 1980.  Google Scholar

[7]

A. IshakuA. M. GazaliS. A. Abdullahi and N. Hussaini, Analysis and optimal control of an HIV model based on CD4 count, J. Math. Biol., 81 (2020), 209-241.  doi: 10.1007/s00285-020-01508-8.  Google Scholar

[8]

E. JungS. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model, Discrete Contin. Dyn. Syst. Ser. B, 2 (2002), 473-482.  doi: 10.3934/dcdsb.2002.2.473.  Google Scholar

[9]

N. Kato, Optimal harvesting for nonlinear size-structured population dynamics, J. Math. Anal. Appl., 342 (2008), 1388-13988.  doi: 10.1016/j.jmaa.2008.01.010.  Google Scholar

[10]

N. Kato, Linear size-structured population models with spacial diffusion and optimal harvesting problems, Math. Model. Nat. Phenom., 9 (2014), 122-130.  doi: 10.1051/mmnp/20149408.  Google Scholar

[11]

M. KloostermanS. A. Campbell and F. J. Poulin, An NPZ model with state-dependent delay due to size-structure in juvenile zooplankton, SIAM J. Appl. Math., 76 (2016), 551-577.  doi: 10.1137/15M1021271.  Google Scholar

[12]

H. D. KwonJ. Lee and M. Yoon, An age-structured model with immune response of HIV infection: Modeling and optimal control approach, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 153-172.  doi: 10.3934/dcdsb.2014.19.153.  Google Scholar

[13]

Y. LiZ. ZhangY. Lv and Z. Liu, Optimal harvesting for a size-stage-structured population model, Nonlinear Anal. Real World Appl., 44 (2018), 616-630.  doi: 10.1016/j.nonrwa.2018.06.001.  Google Scholar

[14]

M. Liu and C. Bai, Optimal harvesting of a stochastic delay competitive model, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1493-1508.  doi: 10.3934/dcdsb.2017071.  Google Scholar

[15]

P. Magal and Z. Zhang, Competition for light in forest population dynamics: From computer simulator to mathematical model, J. Theoret. Biol., 419 (2017), 290-304.  doi: 10.1016/j.jtbi.2017.02.025.  Google Scholar

[16]

P. Magal and Z. Zhang, A system of state-dependent delay differential equation modelling forest growth II: Boundedness of solutions, Nonlinear Anal. Real World Appl., 42 (2018), 334-352.  doi: 10.1016/j.nonrwa.2018.01.002.  Google Scholar

[17]

T. McMahon, Size and shape in biology: Elastic criteria impose limits on biological proportions, and consequently on metabolic rates, Science, 179 (1973), 1201-1204.   Google Scholar

[18]

X. MengNiklas L. P. LundströmM. Bodin and Å ke Brännström, Dynamics and management of stage-structured fish stocks, Bull. Math. Biol., 75 (2013), 1-23.  doi: 10.1007/s11538-012-9789-y.  Google Scholar

[19]

J. A. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations, Springer, 1986. Google Scholar

[20]

R. M. Nisbet and W. S. C. Gurney, The systematic formulation of population models for insects with dynamically varying instar duration, Theoret. Population Biol., 23 (1983), 114-135.  doi: 10.1016/0040-5809(83)90008-4.  Google Scholar

[21]

Y. PeiM. ChenX. Liang and C. Li, Model-based on fishery management systems with selective harvest policies, Math. Comput. Simulation, 156 (2019), 377-395.  doi: 10.1016/j.matcom.2018.08.009.  Google Scholar

[22]

H. L. Smith, Reduction of structured population models to threshold-type delay equations and functional-differential equations: A case study, Math. Biosci., 113 (1993), 1-23.  doi: 10.1016/0025-5564(93)90006-V.  Google Scholar

[23]

H. L. Smith, Existence and uniqueness of global solutions for a size-structured model of an insect population with variable instar duration, Rocky Mountain J. Math., 24 (1994), 311-334.  doi: 10.1216/rmjm/1181072468.  Google Scholar

[24]

H. L. Smith, A structured population model and a related functional differential equation: Global attractors and uniform persistence, J. Dynam. Differential Equations, 6 (1994), 71-99.  doi: 10.1007/BF02219189.  Google Scholar

[25]

H. L. Smith, Equivalent dynamics for a structured population model and a related functional-differential equation, Rocky Mountain J. Math., 25 (1995), 491-499.  doi: 10.1216/rmjm/1181072298.  Google Scholar

[26]

X. Song and L. Chen, Optimal harvesting and stability for a two-species competitive system with stage structure, Math. Biosci., 170 (2001), 173-186.  doi: 10.1016/S0025-5564(00)00068-7.  Google Scholar

[27] H. R. Thieme, Mathematics in Population Biology, Princeton University Press, NJ, 2003.   Google Scholar
[28]

P. Waltman, Deterministic Threshold Models in the Theory of Epidemics, Springer-Verlag, Berlin-New York, 1974.  Google Scholar

[29]

Z. Wang, Optimal harvesting for age distribution and weighted size competitive species with diffusion, J. Comput. Appl. Math., 328 (2018), 485-496.  doi: 10.1016/j.cam.2017.07.026.  Google Scholar

[30]

E. E. Werner and J. F. Gilliam, The ontogenetic niche and species interactions in size-structured populations, Annu. Rev. Ecol. Syst., 15 (1984), 393-425.  doi: 10.1146/annurev.es.15.110184.002141.  Google Scholar

[31]

A. ZenatiM. Chakir and M. Tadjine, Global stability analysis and optimal control therapy of blood cell production process (hematopoiesis) in acute myeloid leukemia, J. Theoret. Biol., 458 (2018), 15-30.  doi: 10.1016/j.jtbi.2018.09.001.  Google Scholar

[32]

F. ZhangR. Liu and Y. Chen, Optimal harvesting in a periodic food chain model with size structures in predators, Appl. Math. Optim., 75 (2017), 229-251.  doi: 10.1007/s00245-016-9331-y.  Google Scholar

[33]

X. ZhangZ. Shuai and K. Wang, Optimal impulsive harvesting policy for single population, Nonlinear Anal. Real World Appl., 4 (2003), 639-651.  doi: 10.1016/S1468-1218(02)00084-6.  Google Scholar

Figure 1.  Time-series of (a) optimal harvesting effort, (b) adult population
Figure 2.  Time-series of (a) growth function, (b) total juvenile population, and juvenile population distributions (c) without harvesting, (d) with optimal harvesting
Figure 3.  (a) Time-series of the optimal harvesting effort, adult population, and total juvenile population, (b) contours of the juvenile population distribution
Figure 4.  Time-series of (a) adult population and growth function, (b) total juvenile population and harvested adult
[1]

Jia Li. Malaria model with stage-structured mosquitoes. Mathematical Biosciences & Engineering, 2011, 8 (3) : 753-768. doi: 10.3934/mbe.2011.8.753

[2]

Jinping Fang, Guang Lin, Hui Wan. Analysis of a stage-structured dengue model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 4045-4061. doi: 10.3934/dcdsb.2018125

[3]

Sebastian Aniţa, Ana-Maria Moşsneagu. Optimal harvesting for age-structured population dynamics with size-dependent control. Mathematical Control & Related Fields, 2019, 9 (4) : 607-621. doi: 10.3934/mcrf.2019043

[4]

Shangzhi Li, Shangjiang Guo. Dynamics of a stage-structured population model with a state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3523-3551. doi: 10.3934/dcdsb.2020071

[5]

Guirong Jiang, Qishao Lu, Linping Peng. Impulsive Ecological Control Of A Stage-Structured Pest Management System. Mathematical Biosciences & Engineering, 2005, 2 (2) : 329-344. doi: 10.3934/mbe.2005.2.329

[6]

Bruno Buonomo, Deborah Lacitignola. On the stabilizing effect of cannibalism in stage-structured population models. Mathematical Biosciences & Engineering, 2006, 3 (4) : 717-731. doi: 10.3934/mbe.2006.3.717

[7]

Wei Feng, Michael T. Cowen, Xin Lu. Coexistence and asymptotic stability in stage-structured predator-prey models. Mathematical Biosciences & Engineering, 2014, 11 (4) : 823-839. doi: 10.3934/mbe.2014.11.823

[8]

Shangzhi Li, Shangjiang Guo. Dynamics of a two-species stage-structured model incorporating state-dependent maturation delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1393-1423. doi: 10.3934/dcdsb.2017067

[9]

Qing Zhu, Huaqin Peng, Xiaoxiao Zheng, Huafeng Xiao. Bifurcation analysis of a stage-structured predator-prey model with prey refuge. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2195-2209. doi: 10.3934/dcdss.2019141

[10]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1763-1781. doi: 10.3934/dcdsb.2021005

[11]

Shangbing Ai, Jia Li, Jianshe Yu, Bo Zheng. Stage-structured models for interactive wild and periodically and impulsively released sterile mosquitoes. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021172

[12]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[13]

Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial & Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067

[14]

Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581

[15]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[16]

Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174

[17]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[18]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[19]

Zhen Wu, Feng Zhang. Maximum principle for discrete-time stochastic optimal control problem and stochastic game. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021031

[20]

Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499

2020 Impact Factor: 1.327

Article outline

Figures and Tables

[Back to Top]