
-
Previous Article
Stability and Hopf bifurcation in a prey-predator model with memory-based diffusion
- DCDS-B Home
- This Issue
-
Next Article
Numerical study of the Serre-Green-Naghdi equations and a fully dispersive counterpart
Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Online First articles via the “Online First” tab for the selected journal.
The damping term makes the Smale-horseshoe heteroclinic chaotic motion easier
1. | School of Basic Sciences for Aviation, Naval Aviation University, Yantai 264001, Shandong, China |
2. | Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing 100044, China |
The nonlinear Rayleigh damping term that is introduced to the classical parametrically excited pendulum makes the parametrically excited pendulum more complex and interesting. The effect of the nonlinear damping term on the new excitable systems is investigated based on analytical techniques such as Melnikov theory. The threshold conditions for the occurrence of Smale-horseshoe chaos of this deterministic system are obtained. Compared with the existing conclusion, i.e. the smaller the damping term is, the easier the chaotic motions become when the damping term is linear, our analysis, however, finds that the smaller or the larger the damping term is, the easier the Smale-horseshoe heteroclinic chaotic motions become. Moreover, the bifurcation diagram and the patterns of attractors in Poincaré map are studied carefully. The results demonstrate the new system exhibits rich dynamical phenomena: periodic motions, quasi-periodic motions and even chaotic motions. Importantly, according to the property of transitive as well as the fractal layers for a chaotic attractor, we can verify whether a attractor is a quasi-periodic one or a chaotic one when the maximum lyapunov exponent method is difficult to distinguish. Numerical simulations confirm the analytical predictions and show that the transition from regular to chaotic motion.
References:
[1] |
G. R. Abdollahzade1, M. Bayat, M. Shahidi, G. Domairry and M. Rostamian,
Analysis of dynamic model of a structure with nonlinear damped behavior, International J. Engineering and Technology, 2 (2012), 160-168.
|
[2] |
S. R. Bishop and M. J. Clifford,
Zones of chaotic behavior in the parametrically excited pendulum, J. Sound Vibration, 189 (1996), 142-147.
doi: 10.1006/jsvi.1996.0011. |
[3] |
C. Dou, J. Fan, C. Li, J. Cao and M. Gao, On discontinuous dynamics of a class of friction-influenced oscillators with nonlinear damping under bilateral rigid constraints, Mechanism and Machine Theory, 147 (2020).
doi: 10.1016/j.mechmachtheory.2019.103750. |
[4] |
A. Elías-Zúniga,
Analytical solution of the damped Helmholtz-Duffing equation, Appl. Math. Lett., 25 (2012), 2349-2353.
doi: 10.1016/j.aml.2012.06.030. |
[5] |
T. S. Jang, H. Baek, H. S. Choi and Su n-GuLee,
A new method for measuring nonharmonic periodic excitation forces in nonlinear damped systems, Mechanical Systems and Signal Processing, 25 (2011), 2219-2228.
doi: 10.1016/j.ymssp.2011.01.012. |
[6] |
P. Kumar and S. Narayanan,
Chaos and bifurcation analysis of stochastically excited discontinuous nonlinear oscillators, Nonlinear Dyn, 102 (2020), 927-950.
doi: 10.1007/s11071-020-05960-5. |
[7] |
D. Li and S. W. Shaw,
The effects of nonlinear damping on degenerate parametric amplification, Nonlinear Dyn, 102 (2020), 2433-2452.
|
[8] |
S. Li, S. Yang and W. Guo,
Investigation on chaotic motion in hysteretic nonlinear suspension system with multi-frequency excitationss, Mechanics Research Communications, 31 (2004), 229-236.
|
[9] |
G. Litak, G. Spuz-Szpos, K. Szabelski and J. Warmiński,
Vibration analysis of a self-excited system with parametric forcing and nonlinear stiffness, Int. J. Bifurcation and Chaos, 9 (1999), 493-504.
doi: 10.1142/S021812749900033X. |
[10] |
H. E. Nusse and J. A. Yorke, Dynamics: Numerical Explorations, Springer-Verlag, New York, 1991. |
[11] |
M. Siewe Siewe, H. J. Cao and A. F. Sanjuán Miguel,
Effect of nonlinear dissipation on the basin boundaries of a driven two-well Rayleigh-Duffing oscillator, Chaos, Solitons and Fractal, 39 (2009), 1092-1099.
doi: 10.1016/j.chaos.2007.05.007. |
[12] |
J. L. Trueba, J. Rams and A. F. Sanjuán Miguel,
Analytical estimates of the effect of nonlinear damping in some nonlinear oscillators, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10 (2000), 2257-2267.
doi: 10.1142/S0218127400001419. |
[13] |
B. Tang and M. J. Brennan,
A comparison of the effects of nonlinear damping on the free vibration of a single-degree of dreedom system, J. Vibration and Acoustics, 134 (2012), 1-5.
|
[14] |
Y. Ueda,
Nonlinear Theory and Its Applications, IEICE, 5 (2014), 252-258.
|
[15] |
S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, volume 2 of Texts in Applied Mathematics, Springer-Verlag, NewYork, NY, 1990.
doi: 10.1007/978-1-4757-4067-7. |
[16] |
H. Youzera, A. Meftah Sid, N. Challamel and A. Tounsi,
Nonlinear damping and forced vibration analysis of laminated composite beams, Composites: Part B, 43 (2012), 1147-1154.
doi: 10.1016/j.compositesb.2012.01.008. |
[17] |
P. P. Zhou and H. J. Cao,
The effect of symmetry-breaking on the parameterically excited pendulum, Chaos, Solitons and Fractals, 38 (2008), 590-597.
doi: 10.1016/j.chaos.2007.06.073. |
show all references
References:
[1] |
G. R. Abdollahzade1, M. Bayat, M. Shahidi, G. Domairry and M. Rostamian,
Analysis of dynamic model of a structure with nonlinear damped behavior, International J. Engineering and Technology, 2 (2012), 160-168.
|
[2] |
S. R. Bishop and M. J. Clifford,
Zones of chaotic behavior in the parametrically excited pendulum, J. Sound Vibration, 189 (1996), 142-147.
doi: 10.1006/jsvi.1996.0011. |
[3] |
C. Dou, J. Fan, C. Li, J. Cao and M. Gao, On discontinuous dynamics of a class of friction-influenced oscillators with nonlinear damping under bilateral rigid constraints, Mechanism and Machine Theory, 147 (2020).
doi: 10.1016/j.mechmachtheory.2019.103750. |
[4] |
A. Elías-Zúniga,
Analytical solution of the damped Helmholtz-Duffing equation, Appl. Math. Lett., 25 (2012), 2349-2353.
doi: 10.1016/j.aml.2012.06.030. |
[5] |
T. S. Jang, H. Baek, H. S. Choi and Su n-GuLee,
A new method for measuring nonharmonic periodic excitation forces in nonlinear damped systems, Mechanical Systems and Signal Processing, 25 (2011), 2219-2228.
doi: 10.1016/j.ymssp.2011.01.012. |
[6] |
P. Kumar and S. Narayanan,
Chaos and bifurcation analysis of stochastically excited discontinuous nonlinear oscillators, Nonlinear Dyn, 102 (2020), 927-950.
doi: 10.1007/s11071-020-05960-5. |
[7] |
D. Li and S. W. Shaw,
The effects of nonlinear damping on degenerate parametric amplification, Nonlinear Dyn, 102 (2020), 2433-2452.
|
[8] |
S. Li, S. Yang and W. Guo,
Investigation on chaotic motion in hysteretic nonlinear suspension system with multi-frequency excitationss, Mechanics Research Communications, 31 (2004), 229-236.
|
[9] |
G. Litak, G. Spuz-Szpos, K. Szabelski and J. Warmiński,
Vibration analysis of a self-excited system with parametric forcing and nonlinear stiffness, Int. J. Bifurcation and Chaos, 9 (1999), 493-504.
doi: 10.1142/S021812749900033X. |
[10] |
H. E. Nusse and J. A. Yorke, Dynamics: Numerical Explorations, Springer-Verlag, New York, 1991. |
[11] |
M. Siewe Siewe, H. J. Cao and A. F. Sanjuán Miguel,
Effect of nonlinear dissipation on the basin boundaries of a driven two-well Rayleigh-Duffing oscillator, Chaos, Solitons and Fractal, 39 (2009), 1092-1099.
doi: 10.1016/j.chaos.2007.05.007. |
[12] |
J. L. Trueba, J. Rams and A. F. Sanjuán Miguel,
Analytical estimates of the effect of nonlinear damping in some nonlinear oscillators, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10 (2000), 2257-2267.
doi: 10.1142/S0218127400001419. |
[13] |
B. Tang and M. J. Brennan,
A comparison of the effects of nonlinear damping on the free vibration of a single-degree of dreedom system, J. Vibration and Acoustics, 134 (2012), 1-5.
|
[14] |
Y. Ueda,
Nonlinear Theory and Its Applications, IEICE, 5 (2014), 252-258.
|
[15] |
S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, volume 2 of Texts in Applied Mathematics, Springer-Verlag, NewYork, NY, 1990.
doi: 10.1007/978-1-4757-4067-7. |
[16] |
H. Youzera, A. Meftah Sid, N. Challamel and A. Tounsi,
Nonlinear damping and forced vibration analysis of laminated composite beams, Composites: Part B, 43 (2012), 1147-1154.
doi: 10.1016/j.compositesb.2012.01.008. |
[17] |
P. P. Zhou and H. J. Cao,
The effect of symmetry-breaking on the parameterically excited pendulum, Chaos, Solitons and Fractals, 38 (2008), 590-597.
doi: 10.1016/j.chaos.2007.06.073. |













[1] |
Michihiro Hirayama, Naoya Sumi. Hyperbolic measures with transverse intersections of stable and unstable manifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1451-1476. doi: 10.3934/dcds.2013.33.1451 |
[2] |
Ruediger Landes. Stable and unstable initial configuration in the theory wave fronts. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 797-808. doi: 10.3934/dcdss.2012.5.797 |
[3] |
A. Kh. Khanmamedov. Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 119-138. doi: 10.3934/dcds.2011.31.119 |
[4] |
Ale Jan Homburg. Heteroclinic bifurcations of $\Omega$-stable vector fields on 3-manifolds. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 559-580. doi: 10.3934/dcds.1998.4.559 |
[5] |
Daniela Giachetti, Maria Michaela Porzio. Global existence for nonlinear parabolic equations with a damping term. Communications on Pure and Applied Analysis, 2009, 8 (3) : 923-953. doi: 10.3934/cpaa.2009.8.923 |
[6] |
Xiaojie Yang, Hui Liu, Chengfeng Sun. Global attractors of the 3D micropolar equations with damping term. Mathematical Foundations of Computing, 2021, 4 (2) : 117-130. doi: 10.3934/mfc.2021007 |
[7] |
Eduardo Henrique Gomes Tavares, Vando Narciso. Attractors for a class of extensible beams with strong nonlinear damping. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022013 |
[8] |
Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations and Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053 |
[9] |
Yuri V. Rogovchenko, Fatoş Tuncay. Interval oscillation of a second order nonlinear differential equation with a damping term. Conference Publications, 2007, 2007 (Special) : 883-891. doi: 10.3934/proc.2007.2007.883 |
[10] |
Tae Gab Ha. On viscoelastic wave equation with nonlinear boundary damping and source term. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1543-1576. doi: 10.3934/cpaa.2010.9.1543 |
[11] |
Bernold Fiedler, Carlos Rocha. Nonlinear Sturm global attractors: Unstable manifold decompositions as regular CW-complexes. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 5099-5122. doi: 10.3934/dcds.2014.34.5099 |
[12] |
Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757 |
[13] |
Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 459-509. doi: 10.3934/dcds.2008.20.459 |
[14] |
Chao Yang, Yanbing Yang. Long-time behavior for fourth-order wave equations with strain term and nonlinear weak damping term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4643-4658. doi: 10.3934/dcdss.2021110 |
[15] |
Eric Benoît. Bifurcation delay - the case of the sequence: Stable focus - unstable focus - unstable node. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 911-929. doi: 10.3934/dcdss.2009.2.911 |
[16] |
Fengjuan Meng, Meihua Yang, Chengkui Zhong. Attractors for wave equations with nonlinear damping on time-dependent space. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 205-225. doi: 10.3934/dcdsb.2016.21.205 |
[17] |
J. B. van den Berg, J. D. Mireles James. Parameterization of slow-stable manifolds and their invariant vector bundles: Theory and numerical implementation. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4637-4664. doi: 10.3934/dcds.2016002 |
[18] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[19] |
Eugen Mihailescu, Mariusz Urbański. Holomorphic maps for which the unstable manifolds depend on prehistories. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 443-450. doi: 10.3934/dcds.2003.9.443 |
[20] |
C. M. Groothedde, J. D. Mireles James. Parameterization method for unstable manifolds of delay differential equations. Journal of Computational Dynamics, 2017, 4 (1&2) : 21-70. doi: 10.3934/jcd.2017002 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]