doi: 10.3934/dcdsb.2021247
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

The damping term makes the Smale-horseshoe heteroclinic chaotic motion easier

1. 

School of Basic Sciences for Aviation, Naval Aviation University, Yantai 264001, Shandong, China

2. 

Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing 100044, China

*Corresponding author: Hongjun Cao

Received  April 2021 Revised  August 2021 Early access October 2021

Fund Project: The first author is supported by the Independent Scientific Research Funds for Naval Aviation University under Project No. I32001011. The second author is supported by the Fundamental Research Funds for the Central Universities under Project No. 2021JBZD005 and the State Key Laboratory of Traction Power, Southwest Jiaotong University under Project No. TPL2001

The nonlinear Rayleigh damping term that is introduced to the classical parametrically excited pendulum makes the parametrically excited pendulum more complex and interesting. The effect of the nonlinear damping term on the new excitable systems is investigated based on analytical techniques such as Melnikov theory. The threshold conditions for the occurrence of Smale-horseshoe chaos of this deterministic system are obtained. Compared with the existing conclusion, i.e. the smaller the damping term is, the easier the chaotic motions become when the damping term is linear, our analysis, however, finds that the smaller or the larger the damping term is, the easier the Smale-horseshoe heteroclinic chaotic motions become. Moreover, the bifurcation diagram and the patterns of attractors in Poincaré map are studied carefully. The results demonstrate the new system exhibits rich dynamical phenomena: periodic motions, quasi-periodic motions and even chaotic motions. Importantly, according to the property of transitive as well as the fractal layers for a chaotic attractor, we can verify whether a attractor is a quasi-periodic one or a chaotic one when the maximum lyapunov exponent method is difficult to distinguish. Numerical simulations confirm the analytical predictions and show that the transition from regular to chaotic motion.

Citation: Huijing Sun, Hongjun Cao. The damping term makes the Smale-horseshoe heteroclinic chaotic motion easier. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021247
References:
[1]

G. R. Abdollahzade1M. BayatM. ShahidiG. Domairry and M. Rostamian, Analysis of dynamic model of a structure with nonlinear damped behavior, International J. Engineering and Technology, 2 (2012), 160-168.   Google Scholar

[2]

S. R. Bishop and M. J. Clifford, Zones of chaotic behavior in the parametrically excited pendulum, J. Sound Vibration, 189 (1996), 142-147.  doi: 10.1006/jsvi.1996.0011.  Google Scholar

[3]

C. Dou, J. Fan, C. Li, J. Cao and M. Gao, On discontinuous dynamics of a class of friction-influenced oscillators with nonlinear damping under bilateral rigid constraints, Mechanism and Machine Theory, 147 (2020). doi: 10.1016/j.mechmachtheory.2019.103750.  Google Scholar

[4]

A. Elías-Zúniga, Analytical solution of the damped Helmholtz-Duffing equation, Appl. Math. Lett., 25 (2012), 2349-2353.  doi: 10.1016/j.aml.2012.06.030.  Google Scholar

[5]

T. S. JangH. BaekH. S. Choi and Su n-GuLee, A new method for measuring nonharmonic periodic excitation forces in nonlinear damped systems, Mechanical Systems and Signal Processing, 25 (2011), 2219-2228.  doi: 10.1016/j.ymssp.2011.01.012.  Google Scholar

[6]

P. Kumar and S. Narayanan, Chaos and bifurcation analysis of stochastically excited discontinuous nonlinear oscillators, Nonlinear Dyn, 102 (2020), 927-950.  doi: 10.1007/s11071-020-05960-5.  Google Scholar

[7]

D. Li and S. W. Shaw, The effects of nonlinear damping on degenerate parametric amplification, Nonlinear Dyn, 102 (2020), 2433-2452.   Google Scholar

[8]

S. LiS. Yang and W. Guo, Investigation on chaotic motion in hysteretic nonlinear suspension system with multi-frequency excitationss, Mechanics Research Communications, 31 (2004), 229-236.   Google Scholar

[9]

G. LitakG. Spuz-SzposK. Szabelski and J. Warmiński, Vibration analysis of a self-excited system with parametric forcing and nonlinear stiffness, Int. J. Bifurcation and Chaos, 9 (1999), 493-504.  doi: 10.1142/S021812749900033X.  Google Scholar

[10]

H. E. Nusse and J. A. Yorke, Dynamics: Numerical Explorations, Springer-Verlag, New York, 1991.  Google Scholar

[11]

M. Siewe SieweH. J. Cao and A. F. Sanjuán Miguel, Effect of nonlinear dissipation on the basin boundaries of a driven two-well Rayleigh-Duffing oscillator, Chaos, Solitons and Fractal, 39 (2009), 1092-1099.  doi: 10.1016/j.chaos.2007.05.007.  Google Scholar

[12]

J. L. TruebaJ. Rams and A. F. Sanjuán Miguel, Analytical estimates of the effect of nonlinear damping in some nonlinear oscillators, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10 (2000), 2257-2267.  doi: 10.1142/S0218127400001419.  Google Scholar

[13]

B. Tang and M. J. Brennan, A comparison of the effects of nonlinear damping on the free vibration of a single-degree of dreedom system, J. Vibration and Acoustics, 134 (2012), 1-5.   Google Scholar

[14]

Y. Ueda, Nonlinear Theory and Its Applications, IEICE, 5 (2014), 252-258.   Google Scholar

[15]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, volume 2 of Texts in Applied Mathematics, Springer-Verlag, NewYork, NY, 1990. doi: 10.1007/978-1-4757-4067-7.  Google Scholar

[16]

H. YouzeraA. Meftah SidN. Challamel and A. Tounsi, Nonlinear damping and forced vibration analysis of laminated composite beams, Composites: Part B, 43 (2012), 1147-1154.  doi: 10.1016/j.compositesb.2012.01.008.  Google Scholar

[17]

P. P. Zhou and H. J. Cao, The effect of symmetry-breaking on the parameterically excited pendulum, Chaos, Solitons and Fractals, 38 (2008), 590-597.  doi: 10.1016/j.chaos.2007.06.073.  Google Scholar

show all references

References:
[1]

G. R. Abdollahzade1M. BayatM. ShahidiG. Domairry and M. Rostamian, Analysis of dynamic model of a structure with nonlinear damped behavior, International J. Engineering and Technology, 2 (2012), 160-168.   Google Scholar

[2]

S. R. Bishop and M. J. Clifford, Zones of chaotic behavior in the parametrically excited pendulum, J. Sound Vibration, 189 (1996), 142-147.  doi: 10.1006/jsvi.1996.0011.  Google Scholar

[3]

C. Dou, J. Fan, C. Li, J. Cao and M. Gao, On discontinuous dynamics of a class of friction-influenced oscillators with nonlinear damping under bilateral rigid constraints, Mechanism and Machine Theory, 147 (2020). doi: 10.1016/j.mechmachtheory.2019.103750.  Google Scholar

[4]

A. Elías-Zúniga, Analytical solution of the damped Helmholtz-Duffing equation, Appl. Math. Lett., 25 (2012), 2349-2353.  doi: 10.1016/j.aml.2012.06.030.  Google Scholar

[5]

T. S. JangH. BaekH. S. Choi and Su n-GuLee, A new method for measuring nonharmonic periodic excitation forces in nonlinear damped systems, Mechanical Systems and Signal Processing, 25 (2011), 2219-2228.  doi: 10.1016/j.ymssp.2011.01.012.  Google Scholar

[6]

P. Kumar and S. Narayanan, Chaos and bifurcation analysis of stochastically excited discontinuous nonlinear oscillators, Nonlinear Dyn, 102 (2020), 927-950.  doi: 10.1007/s11071-020-05960-5.  Google Scholar

[7]

D. Li and S. W. Shaw, The effects of nonlinear damping on degenerate parametric amplification, Nonlinear Dyn, 102 (2020), 2433-2452.   Google Scholar

[8]

S. LiS. Yang and W. Guo, Investigation on chaotic motion in hysteretic nonlinear suspension system with multi-frequency excitationss, Mechanics Research Communications, 31 (2004), 229-236.   Google Scholar

[9]

G. LitakG. Spuz-SzposK. Szabelski and J. Warmiński, Vibration analysis of a self-excited system with parametric forcing and nonlinear stiffness, Int. J. Bifurcation and Chaos, 9 (1999), 493-504.  doi: 10.1142/S021812749900033X.  Google Scholar

[10]

H. E. Nusse and J. A. Yorke, Dynamics: Numerical Explorations, Springer-Verlag, New York, 1991.  Google Scholar

[11]

M. Siewe SieweH. J. Cao and A. F. Sanjuán Miguel, Effect of nonlinear dissipation on the basin boundaries of a driven two-well Rayleigh-Duffing oscillator, Chaos, Solitons and Fractal, 39 (2009), 1092-1099.  doi: 10.1016/j.chaos.2007.05.007.  Google Scholar

[12]

J. L. TruebaJ. Rams and A. F. Sanjuán Miguel, Analytical estimates of the effect of nonlinear damping in some nonlinear oscillators, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10 (2000), 2257-2267.  doi: 10.1142/S0218127400001419.  Google Scholar

[13]

B. Tang and M. J. Brennan, A comparison of the effects of nonlinear damping on the free vibration of a single-degree of dreedom system, J. Vibration and Acoustics, 134 (2012), 1-5.   Google Scholar

[14]

Y. Ueda, Nonlinear Theory and Its Applications, IEICE, 5 (2014), 252-258.   Google Scholar

[15]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, volume 2 of Texts in Applied Mathematics, Springer-Verlag, NewYork, NY, 1990. doi: 10.1007/978-1-4757-4067-7.  Google Scholar

[16]

H. YouzeraA. Meftah SidN. Challamel and A. Tounsi, Nonlinear damping and forced vibration analysis of laminated composite beams, Composites: Part B, 43 (2012), 1147-1154.  doi: 10.1016/j.compositesb.2012.01.008.  Google Scholar

[17]

P. P. Zhou and H. J. Cao, The effect of symmetry-breaking on the parameterically excited pendulum, Chaos, Solitons and Fractals, 38 (2008), 590-597.  doi: 10.1016/j.chaos.2007.06.073.  Google Scholar

Figure 1.  The corresponding curves of the potential function and the phase spaces portraits when $ \gamma = 0 $ and $ \gamma = 0.05 $. (a) The potential function $ V(x) $ for $ \gamma = 0 $. (b) The phase spaces portraits when $ \gamma = 0 $. The closed trajectories represent oscillation motion around the hanging position, while the opened trajectories $ R_{1} $, $ R_{2} $ with unchanging sign of velocity visualize the rotating motion of the pendulum in the anti-clockwise or clockwise direction, respectively. (c) The potential function $ V(x) $ for $ \gamma = 0.05 $. (d) The phase spaces portraits when $ \gamma = 0.05 $. Starting from each hyperbolic saddle, there exists an asymmetric homoclinic orbit located at the right-hand of each saddle, which means oscillation motions from one peak point can not reach to the next right peak point but turn downward.
Figure 2.  (a) Two heteroclinic orbits, two hyperbolic saddles $ x_{1} $, $ x_{-1} $ and a turning point $ x_{TP} $. (b) A homoclinic orbit, a hyperbolic saddle $ x_{-1} $ and a turning point $ x_{TP} $.
Figure 3.  The critical heteroclinic bifurcation curves are ploted when $ \gamma = 0 $. (a) $ F = 2 $.The region (I) below the heteroclinic bifurcation curve represents $ M_{-1,1}(t) $ has simple zeros, which means the upper heteroclinic orbit will break and then the chaotic behavior may appear. Similarly, the region (II) over the heteroclinic bifurcation curve represents $ M_{1,-1}(t) $ has simple zeros, which means the lower heteroclinic orbit will break and then the chaotic behavior may appear. (b) $ F = 2 $ and $ F = 3 $.The larger the exciting term coefficient $ F $ is, the easier the chaotic motions become.
Figure 4.  The critical homoclinic bifurcation curves are plotted when $ \gamma = 0.05 $, $ F = 2 $, and $ \gamma = 0.05 $, $ F = 3 $, respectively. The possible chaotic motions will be getting popular in system with decrease of $ \mu $ and the increase of $ F $. It is also found that for a fixed value of $ F $, there are three critical values under which homoclinic bifurcation may occur.
Figure 5.  The stable and unstable manifolds of the fixed points of equation $ \ddot{x}-\mu(1-\dot{x}^2)\dot{x}+\sin x+\gamma+F\sin x\cos(\omega{t}) = 0 $ (with $ \gamma = 0, F = 2, \omega = 1.3 $, $ \mu = 0.12 $ in (a) and $ \mu = 0.83 $ in (b)). (a) Fixed points, stable and unstable manifolds of the fixed point (approximately $ (3.067,-0.622)) $. In the upper left window, the fixed points are marked by crosses. In the upper right window, a part of stable manifold (blue online) of the fixed point (approximately $ (3.067,-0.622) $) is superimposed. In the lower left window, a part of unstable manifold (red online) of the fixed point (approximately $ (3.067,-0.622) $) is superimposed. The lower right window contains a superposition of the pictures of the upper left, upper right, lower left windows. The intersection of the stable and unstable manifolds implies the existence of chaos. (b) A part of the stable (blue online) and unstable manifold (red online) of the fixed point (approximately $ (3.063,-0.021) $). The intersection of the stable and unstable manifolds implies the existence of chaos.
Figure 6.  The stable and unstable manifolds of the fixed points of equation $ \ddot{x}-\mu(1-\dot{x}^2)\dot{x}+\sin x+\gamma+F\sin x\cos(\omega{t}) = 0 $ (with $ \gamma = 0.05, F = 3, \omega = 2.4 $, $ \mu = 0.23 $ in (a) and $ \mu = 0.72 $ in (b)). (a) Fixed points, stable and unstable manifolds of the fixed point (approximately $ (-3.052,-0.018)) $. In the upper left window, the fixed points are marked by crosses. In the upper right window, a part of stable manifold (blue online) of the fixed point (approximately $ (-3.052,-0.018)) $ is superimposed. In the lower left window, a part of unstable manifold (red online) of the fixed point (approximately $ (-3.052,-0.018)) $ is superimposed. The lower right window contains a superposition of the pictures of the upper left, upper right, lower left windows. The intersection of the stable and unstable manifolds implies the existence of chaos. (b) A part of stable (blue online) and unstable (red online) manifolds of the fixed point (approximately $ (-3.064,-0.032) $). The separation of the stable and unstable manifolds means that chaos does not exist.
Figure 7.  Bifurcation diagrams and the corresponding maximal Lyapunov exponents of equation $ \ddot{x}-\mu(1-\dot{x}^2)\dot{x}+\sin x+\gamma+F\sin x\cos(\omega{t}) = 0 $, (a) and (b) with $ \gamma = 0, F = 2, \omega = 1.3 $, (c) and (d) with $ \gamma = 0.05, F = 3, \omega = 2.4 $, respectively, where $ \mu $ represents the bifurcation parameter and $ L_{max} $ denotes the maximum Lyapunov exponents.
Figure 8.  A chaotic attractor and consecutive blow-ups in $ (x,y) $ plane. (a) shows a chaotic attractor with the parameter values $ \mu = 0.1 $, $ \gamma = 0, F = 2, \omega = 1.3 $. The coordinates of the (b) are the coordinates of the rectangle in (a). Similarly, the coordinates of (c) are the coordinates of the rectangle in (b).
Figure 9.  (a) A quasi-periodic attractor with the parameter values $ \mu = 0.41 $, $ \gamma = 0.05, F = 3, \omega = 2.4 $. (b) A blow-up of (a). The coordinates of the (b) are the coordinates of the rectangle in (a).
Figure 10.  (a) Two attractors of fixed points $ (-1.5964,1.7136) $ and $ (1.5964,-1.7136) $ in $ (x,y) $ plane with the parameters are $ \mu = 0.8, $ $ \gamma = 0, $ $ F = 2 $ and $ \omega = 1.3 $. (b) Basins of attraction for the two fixed points in $ (x,y) $ plane,
Figure 11.  Period-8 points when parameters $ \mu = 0.52, \gamma = 0.05, F = 3, \omega = 2.4 $.
Figure 12.  (a) Bifurcation diagrams in $ (\mu, x) $ plane with $ \gamma = 0.05, F = 3, \omega = 5.1 $, where $ \mu $ is the bifurcation parameter. (b) The corresponding maximal Lyapunov exponent in $ (\mu, L_{max}) $ plane, where $ L_{max} $ denotes the maximum Lyapunov exponents.
Figure 13.  (a) Five different attractors when $ \mu = 0.01, \gamma = 0.05, F = 3, \omega = 5.1 $. Limit cycle (as shown in the upper left window); Period-$ 2 $ points (as shown in the upper right window); Period-$ 6 $ points (as shown in the lower left and right windows). (b) The corresponding attractive basins of the five attractors.
[1]

Michihiro Hirayama, Naoya Sumi. Hyperbolic measures with transverse intersections of stable and unstable manifolds. Discrete & Continuous Dynamical Systems, 2013, 33 (4) : 1451-1476. doi: 10.3934/dcds.2013.33.1451

[2]

Ruediger Landes. Stable and unstable initial configuration in the theory wave fronts. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 797-808. doi: 10.3934/dcdss.2012.5.797

[3]

A. Kh. Khanmamedov. Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 119-138. doi: 10.3934/dcds.2011.31.119

[4]

Ale Jan Homburg. Heteroclinic bifurcations of $\Omega$-stable vector fields on 3-manifolds. Discrete & Continuous Dynamical Systems, 1998, 4 (3) : 559-580. doi: 10.3934/dcds.1998.4.559

[5]

Daniela Giachetti, Maria Michaela Porzio. Global existence for nonlinear parabolic equations with a damping term. Communications on Pure & Applied Analysis, 2009, 8 (3) : 923-953. doi: 10.3934/cpaa.2009.8.923

[6]

Xiaojie Yang, Hui Liu, Chengfeng Sun. Global attractors of the 3D micropolar equations with damping term. Mathematical Foundations of Computing, 2021, 4 (2) : 117-130. doi: 10.3934/mfc.2021007

[7]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[8]

Yuri V. Rogovchenko, Fatoş Tuncay. Interval oscillation of a second order nonlinear differential equation with a damping term. Conference Publications, 2007, 2007 (Special) : 883-891. doi: 10.3934/proc.2007.2007.883

[9]

Tae Gab Ha. On viscoelastic wave equation with nonlinear boundary damping and source term. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1543-1576. doi: 10.3934/cpaa.2010.9.1543

[10]

Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete & Continuous Dynamical Systems, 2008, 20 (3) : 459-509. doi: 10.3934/dcds.2008.20.459

[11]

Chao Yang, Yanbing Yang. Long-time behavior for fourth-order wave equations with strain term and nonlinear weak damping term. Discrete & Continuous Dynamical Systems - S, 2021, 14 (12) : 4643-4658. doi: 10.3934/dcdss.2021110

[12]

Bernold Fiedler, Carlos Rocha. Nonlinear Sturm global attractors: Unstable manifold decompositions as regular CW-complexes. Discrete & Continuous Dynamical Systems, 2014, 34 (12) : 5099-5122. doi: 10.3934/dcds.2014.34.5099

[13]

Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete & Continuous Dynamical Systems, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757

[14]

Fengjuan Meng, Meihua Yang, Chengkui Zhong. Attractors for wave equations with nonlinear damping on time-dependent space. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 205-225. doi: 10.3934/dcdsb.2016.21.205

[15]

Eric Benoît. Bifurcation delay - the case of the sequence: Stable focus - unstable focus - unstable node. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 911-929. doi: 10.3934/dcdss.2009.2.911

[16]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[17]

J. B. van den Berg, J. D. Mireles James. Parameterization of slow-stable manifolds and their invariant vector bundles: Theory and numerical implementation. Discrete & Continuous Dynamical Systems, 2016, 36 (9) : 4637-4664. doi: 10.3934/dcds.2016002

[18]

Eugen Mihailescu, Mariusz Urbański. Holomorphic maps for which the unstable manifolds depend on prehistories. Discrete & Continuous Dynamical Systems, 2003, 9 (2) : 443-450. doi: 10.3934/dcds.2003.9.443

[19]

C. M. Groothedde, J. D. Mireles James. Parameterization method for unstable manifolds of delay differential equations. Journal of Computational Dynamics, 2017, 4 (1&2) : 21-70. doi: 10.3934/jcd.2017002

[20]

Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (57)
  • HTML views (50)
  • Cited by (0)

Other articles
by authors

[Back to Top]