doi: 10.3934/dcdsb.2021248
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Pseudo compact almost automorphy of neutral type Clifford-valued neural networks with mixed delays

1. 

Department of Mathematics, Yunnan University, Kunming, Yunnan 650091, China

2. 

School of Mathematics and Computer Science, Yunnan Nationalities University, Kunming, Yunnan 650500, China

* Corresponding author: Yongkun Li

Received  April 2020 Revised  July 2021 Early access October 2021

Fund Project: The first author is supported by the National Natural Science Foundation of China under Grant No. 11861072 and the second author is supported by the Applied Basic Research Foundation of Yunnan Province under Grant No. 2019FB003

We consider a class of neutral type Clifford-valued cellular neural networks with discrete delays and infinitely distributed delays. Unlike most previous studies on Clifford-valued neural networks, we assume that the self feedback connection weights of the networks are Clifford numbers rather than real numbers. In order to study the existence of $ (\mu, \nu) $-pseudo compact almost automorphic solutions of the networks, we prove a composition theorem of $ (\mu, \nu) $-pseudo compact almost automorphic functions with varying deviating arguments. Based on this composition theorem and the fixed point theorem, we establish the existence and the uniqueness of $ (\mu, \nu) $-pseudo compact almost automorphic solutions of the networks. Then, we investigate the global exponential stability of the solution by employing differential inequality techniques. Finally, we give an example to illustrate our theoretical finding. Our results obtained in this paper are completely new, even when the considered networks are degenerated into real-valued, complex-valued or quaternion-valued networks.

Citation: Yongkun Li, Bing Li. Pseudo compact almost automorphy of neutral type Clifford-valued neural networks with mixed delays. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021248
References:
[1]

E. H. Ait Dads, F. Boudchich and B. Es-Sebbar, Compact almost automorphic solutions for some nonlinear integral equations with time-dependent and state-dependent delay, Adv. Diff. Equ., 2017 (2017), Paper No. 307, 21 pp. doi: 10.1186/s13662-017-1364-2.  Google Scholar

[2]

E. H. Ait Dads, K. Ezzinbi and M. Miraoui, $(\mu, \nu)$-Pseudo almost automorphic solutions for some non-autonomous differential equations, Internat. J. Math., 26 (2015), 1550090, 21 pp. doi: 10.1142/S0129167X15500901.  Google Scholar

[3]

C. Aouiti and F. Dridi, Weighted pseudo almost automorphic solutions for neutral type fuzzy cellular neural networks with mixed delays and $D$ operator in Clifford algebra, Int. J. Syst. Sci., 51 (2020), 1759-1781.  doi: 10.1080/00207721.2020.1777345.  Google Scholar

[4]

C. AouitiF. DridiQ. Hui and E. Moulay, $(\mu, \nu)$-Pseudo almost automorphic solutions of neutral type Clifford-valued high-order hopfield neural networks with D operator, Neural Process. Lett., 53 (2021), 799-828.   Google Scholar

[5]

J. BlotP. Cieutat and K. Ezzinbi, New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications, Applic. Anal., 92 (2013), 493-526.  doi: 10.1080/00036811.2011.628941.  Google Scholar

[6]

S. Bochner, A new approach to almost periodicity, Proc. Nat. Acad. Sci. U.S.A., 48 (1962), 2039-2043.  doi: 10.1073/pnas.48.12.2039.  Google Scholar

[7]

F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, Pitman Books Limited, London, 1982.  Google Scholar

[8]

S. Buchholz, A Theory of Neural Computation with Clifford Algebras, Ph. D. thesis, University of Kiel, Kiel, 2005. Google Scholar

[9]

S. Buchholz and G. Sommer, On Clifford neurons and Clifford multi-layer perceptrons, Neural Netw., 21 (2008), 925-935.  doi: 10.1016/j.neunet.2008.03.004.  Google Scholar

[10]

B. de Andrade and C. Cuevas, Compact almost automorphic solutions to semilinear Cauchy problems with non-dense domain, Appl. Math. Comput., 215 (2009), 2843-2849.  doi: 10.1016/j.amc.2009.09.025.  Google Scholar

[11]

T. Diagana, Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, Springer, New York, 2003. doi: 10.1007/978-3-319-00849-3.  Google Scholar

[12]

N. DrisiB. Es-Sebbar and K. Ezzinbi, Compact almost automorphic solutions for some nonlinear dissipative differential equations in Banach spaces, Numer. Funct. Anal. Optim., 39 (2018), 825-841.  doi: 10.1080/01630563.2017.1423328.  Google Scholar

[13]

B. Es-Sebbar, Almost automorphic evolution equations with compact almost automorphic solutions, C. R. Math. Acad. Sci. Paris, 354 (2016), 1071-1077.  doi: 10.1016/j.crma.2016.10.001.  Google Scholar

[14]

E. Hernández and J. Wu, Existence, uniqueness and qualitative properties of global solutions of abstract differential equations with state-dependent delay, Proc. Edinb. Math. Soc. II, 62 (2019), 771-788.  doi: 10.1017/S001309151800069X.  Google Scholar

[15]

Y. Hino and S. Murakami, Almost automorphic solutions for abstract functional differential equations, J. Math. Anal. Appl., 286 (2003), 741-752.  doi: 10.1016/S0022-247X(03)00531-6.  Google Scholar

[16]

E. HitzerT. Nitta and Y. Kuroe, Applications of Clifford's geometric algebra, Adv. Appl. Clifford Algebras, 23 (2013), 377-404.  doi: 10.1007/s00006-013-0378-4.  Google Scholar

[17]

B. Li and Y. Li, Existence and global exponential stability of pseudo almost periodic solution for Clifford-valued neutral high-order Hopfield neural networks with leakage delays, IEEE Access, 7 (2019), 150213-150225.   Google Scholar

[18]

B. Li and Y. Li, Existence and global exponential stability of almost automorphic solution for Clifford-valued high-order Hopfield neural networks with leakage delays, Complexity, 2019 (2019), 6751806.  doi: 10.1155/2019/6751806.  Google Scholar

[19]

Y. Li and N. Huo, $(\mu, \nu)$-pseudo almost periodic solutions of Clifford-valued high-order HNNs with multiple discrete delays, Neurocomputing, 414 (2020), 1-9.   Google Scholar

[20]

Y. LiN. Huo and B. Li, On $\mu$–pseudo almost periodic solution for Clifford-valued neutral type neural networks with leakage delays, IEEE Trans. Neural Netw. Learn. Syst., 32 (2021), 1365-1374.  doi: 10.1109/TNNLS.2020.2984655.  Google Scholar

[21]

Y. Li and S. Shen, Almost automorphic solutions for Clifford-valued neutral-type fuzzy cellular neural networks with leakage delays on time scales, Neurocomputing, 417 (2020), 23-35.   Google Scholar

[22]

Y. Li, Y. Wang and B. Li, The existence and global exponential stability of $\mu$-pseudo almost periodic solutions of Clifford-valued semi-linear delay differential equations and an application, Adv. Appl. Clifford Algebras, 29 (2019), Paper No. 105, 18 pp. doi: 10.1007/s00006-019-1025-5.  Google Scholar

[23]

Y. Li and J. Xiang, Existence and global exponential stability of anti-periodic solution for Clifford-valued inertial Cohen-Grossberg neural networks with delays, Neurocomputing, 332 (2019), 259-269.  doi: 10.1016/j.neucom.2018.12.064.  Google Scholar

[24]

J. Pearson and D. Bisset, Back propagation in a Clifford algebra, Artif. Neural Netw., 2 (1992), 413-416.   Google Scholar

[25]

G. Rajchakit, R. Sriraman, P. Vignesh and C. P. Lim, Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis, Appl. Math. Comput., 407 (2021), 126309, 18 pp. doi: 10.1016/j.amc.2021.126309.  Google Scholar

[26]

S. Shen and Y. Li, $S^p$-Almost periodic solutions of Clifford-valued fuzzy cellular neural networks with time-varying delays, Neural Process. Lett., 51 (2020), 1749-1769.   Google Scholar

[27]

W. A. Veech, Almost automorphic functions on groups, Amer. J. Math., 87 (1965), 719-751.  doi: 10.2307/2373071.  Google Scholar

[28]

W. A. Veech, On a theorem of Bochner, Ann. of Math., 86 (1967), 117-137.  doi: 10.2307/1970363.  Google Scholar

show all references

References:
[1]

E. H. Ait Dads, F. Boudchich and B. Es-Sebbar, Compact almost automorphic solutions for some nonlinear integral equations with time-dependent and state-dependent delay, Adv. Diff. Equ., 2017 (2017), Paper No. 307, 21 pp. doi: 10.1186/s13662-017-1364-2.  Google Scholar

[2]

E. H. Ait Dads, K. Ezzinbi and M. Miraoui, $(\mu, \nu)$-Pseudo almost automorphic solutions for some non-autonomous differential equations, Internat. J. Math., 26 (2015), 1550090, 21 pp. doi: 10.1142/S0129167X15500901.  Google Scholar

[3]

C. Aouiti and F. Dridi, Weighted pseudo almost automorphic solutions for neutral type fuzzy cellular neural networks with mixed delays and $D$ operator in Clifford algebra, Int. J. Syst. Sci., 51 (2020), 1759-1781.  doi: 10.1080/00207721.2020.1777345.  Google Scholar

[4]

C. AouitiF. DridiQ. Hui and E. Moulay, $(\mu, \nu)$-Pseudo almost automorphic solutions of neutral type Clifford-valued high-order hopfield neural networks with D operator, Neural Process. Lett., 53 (2021), 799-828.   Google Scholar

[5]

J. BlotP. Cieutat and K. Ezzinbi, New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications, Applic. Anal., 92 (2013), 493-526.  doi: 10.1080/00036811.2011.628941.  Google Scholar

[6]

S. Bochner, A new approach to almost periodicity, Proc. Nat. Acad. Sci. U.S.A., 48 (1962), 2039-2043.  doi: 10.1073/pnas.48.12.2039.  Google Scholar

[7]

F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, Pitman Books Limited, London, 1982.  Google Scholar

[8]

S. Buchholz, A Theory of Neural Computation with Clifford Algebras, Ph. D. thesis, University of Kiel, Kiel, 2005. Google Scholar

[9]

S. Buchholz and G. Sommer, On Clifford neurons and Clifford multi-layer perceptrons, Neural Netw., 21 (2008), 925-935.  doi: 10.1016/j.neunet.2008.03.004.  Google Scholar

[10]

B. de Andrade and C. Cuevas, Compact almost automorphic solutions to semilinear Cauchy problems with non-dense domain, Appl. Math. Comput., 215 (2009), 2843-2849.  doi: 10.1016/j.amc.2009.09.025.  Google Scholar

[11]

T. Diagana, Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, Springer, New York, 2003. doi: 10.1007/978-3-319-00849-3.  Google Scholar

[12]

N. DrisiB. Es-Sebbar and K. Ezzinbi, Compact almost automorphic solutions for some nonlinear dissipative differential equations in Banach spaces, Numer. Funct. Anal. Optim., 39 (2018), 825-841.  doi: 10.1080/01630563.2017.1423328.  Google Scholar

[13]

B. Es-Sebbar, Almost automorphic evolution equations with compact almost automorphic solutions, C. R. Math. Acad. Sci. Paris, 354 (2016), 1071-1077.  doi: 10.1016/j.crma.2016.10.001.  Google Scholar

[14]

E. Hernández and J. Wu, Existence, uniqueness and qualitative properties of global solutions of abstract differential equations with state-dependent delay, Proc. Edinb. Math. Soc. II, 62 (2019), 771-788.  doi: 10.1017/S001309151800069X.  Google Scholar

[15]

Y. Hino and S. Murakami, Almost automorphic solutions for abstract functional differential equations, J. Math. Anal. Appl., 286 (2003), 741-752.  doi: 10.1016/S0022-247X(03)00531-6.  Google Scholar

[16]

E. HitzerT. Nitta and Y. Kuroe, Applications of Clifford's geometric algebra, Adv. Appl. Clifford Algebras, 23 (2013), 377-404.  doi: 10.1007/s00006-013-0378-4.  Google Scholar

[17]

B. Li and Y. Li, Existence and global exponential stability of pseudo almost periodic solution for Clifford-valued neutral high-order Hopfield neural networks with leakage delays, IEEE Access, 7 (2019), 150213-150225.   Google Scholar

[18]

B. Li and Y. Li, Existence and global exponential stability of almost automorphic solution for Clifford-valued high-order Hopfield neural networks with leakage delays, Complexity, 2019 (2019), 6751806.  doi: 10.1155/2019/6751806.  Google Scholar

[19]

Y. Li and N. Huo, $(\mu, \nu)$-pseudo almost periodic solutions of Clifford-valued high-order HNNs with multiple discrete delays, Neurocomputing, 414 (2020), 1-9.   Google Scholar

[20]

Y. LiN. Huo and B. Li, On $\mu$–pseudo almost periodic solution for Clifford-valued neutral type neural networks with leakage delays, IEEE Trans. Neural Netw. Learn. Syst., 32 (2021), 1365-1374.  doi: 10.1109/TNNLS.2020.2984655.  Google Scholar

[21]

Y. Li and S. Shen, Almost automorphic solutions for Clifford-valued neutral-type fuzzy cellular neural networks with leakage delays on time scales, Neurocomputing, 417 (2020), 23-35.   Google Scholar

[22]

Y. Li, Y. Wang and B. Li, The existence and global exponential stability of $\mu$-pseudo almost periodic solutions of Clifford-valued semi-linear delay differential equations and an application, Adv. Appl. Clifford Algebras, 29 (2019), Paper No. 105, 18 pp. doi: 10.1007/s00006-019-1025-5.  Google Scholar

[23]

Y. Li and J. Xiang, Existence and global exponential stability of anti-periodic solution for Clifford-valued inertial Cohen-Grossberg neural networks with delays, Neurocomputing, 332 (2019), 259-269.  doi: 10.1016/j.neucom.2018.12.064.  Google Scholar

[24]

J. Pearson and D. Bisset, Back propagation in a Clifford algebra, Artif. Neural Netw., 2 (1992), 413-416.   Google Scholar

[25]

G. Rajchakit, R. Sriraman, P. Vignesh and C. P. Lim, Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis, Appl. Math. Comput., 407 (2021), 126309, 18 pp. doi: 10.1016/j.amc.2021.126309.  Google Scholar

[26]

S. Shen and Y. Li, $S^p$-Almost periodic solutions of Clifford-valued fuzzy cellular neural networks with time-varying delays, Neural Process. Lett., 51 (2020), 1749-1769.   Google Scholar

[27]

W. A. Veech, Almost automorphic functions on groups, Amer. J. Math., 87 (1965), 719-751.  doi: 10.2307/2373071.  Google Scholar

[28]

W. A. Veech, On a theorem of Bochner, Ann. of Math., 86 (1967), 117-137.  doi: 10.2307/1970363.  Google Scholar

Figure 1.  Curves of $ x_{p}^{0}(t) $ and $ x_{p}^{1}(t) $ of system (1) with the initial values $ (x_{1}^{0}(0), x_{2}^{0}(0))^{T} = (0.05, -0.1)^{T}, (-0.06, 0.09)^{T} $ and $ (x_{1}^{1}(0), x_{2}^{1}(0))^{T} = (-0.1, 0.05)^{T}, (0.1, -0.04)^{T} $
Figure 2.  Curves of $ x_{p}^{2}(t) $ and $ x_{p}^{3}(t) $ of system (1) with the initial values $ (x_{1}^{2}(0), x_{2}^{2}(0))^{T} = (-0.03, 0.1)^{T}, (-0.1, 0.02)^{T} $ and $ (x_{1}^{3}(0), x_{2}^{3}(0))^{T} = (0.1, -0.1)^{T}, (0.04, -0.02)^{T} $
Figure 3.  Curves of $ x_{p}^{12}(t) $ and $ x_{p}^{13}(t) $ of system (1) with the initial values $ (x_{1}^{12}(0), x_{2}^{12}(0))^{T} = (-0.04, 0.04)^{T}, (0.08, -0.07)^{T} $ and $ (x_{1}^{13}(0), x_{2}^{13}(0))^{T} = (0.07, -0.06)^{T}, (-0.02, 0.03)^{T} $
Figure 4.  Curves of $ x_{p}^{23}(t) $ and $ x_{p}^{123}(t) $ of system (1) with the initial values $ (x_{1}^{23}(0), x_{2}^{23}(0))^{T} = (0.08, 0.02)^{T}, (-0.1, -0.04)^{T} $ and $ (x_{1}^{123}(0), x_{2}^{123}(0))^{T} = (0.03, -0.02)^{T}, (-0.1, 0.08)^{T} $
[1]

Rui Zhang, Yong-Kui Chang, G. M. N'Guérékata. Weighted pseudo almost automorphic mild solutions to semilinear integral equations with $S^{p}$-weighted pseudo almost automorphic coefficients. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5525-5537. doi: 10.3934/dcds.2013.33.5525

[2]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[3]

Jianfeng Feng, Mariya Shcherbina, Brunello Tirozzi. Stability of the dynamics of an asymmetric neural network. Communications on Pure & Applied Analysis, 2009, 8 (2) : 655-671. doi: 10.3934/cpaa.2009.8.655

[4]

Fang Han, Bin Zhen, Ying Du, Yanhong Zheng, Marian Wiercigroch. Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 457-474. doi: 10.3934/dcdsb.2011.16.457

[5]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[6]

Yejuan Wang, Lin Yang. Global exponential attraction for multi-valued semidynamical systems with application to delay differential equations without uniqueness. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1961-1987. doi: 10.3934/dcdsb.2018257

[7]

Ndolane Sene. Fractional input stability and its application to neural network. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 853-865. doi: 10.3934/dcdss.2020049

[8]

Ying Sue Huang, Chai Wah Wu. Stability of cellular neural network with small delays. Conference Publications, 2005, 2005 (Special) : 420-426. doi: 10.3934/proc.2005.2005.420

[9]

Gaston Mandata N ' Guerekata. Remarks on almost automorphic differential equations. Conference Publications, 2001, 2001 (Special) : 276-279. doi: 10.3934/proc.2001.2001.276

[10]

Yana Guo, Yan Jia, Bo-Qing Dong. Global stability solution of the 2D MHD equations with mixed partial dissipation. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021141

[11]

Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219

[12]

Chuangxia Huang, Hedi Yang, Jinde Cao. Weighted pseudo almost periodicity of multi-proportional delayed shunting inhibitory cellular neural networks with D operator. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1259-1272. doi: 10.3934/dcdss.2020372

[13]

Ricai Luo, Honglei Xu, Wu-Sheng Wang, Jie Sun, Wei Xu. A weak condition for global stability of delayed neural networks. Journal of Industrial & Management Optimization, 2016, 12 (2) : 505-514. doi: 10.3934/jimo.2016.12.505

[14]

César Augusto Bortot, Wellington José Corrêa, Ryuichi Fukuoka, Thales Maier Souza. Exponential stability for the locally damped defocusing Schrödinger equation on compact manifold. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1367-1386. doi: 10.3934/cpaa.2020067

[15]

Sylvia Novo, Rafael Obaya, Ana M. Sanz. Exponential stability in non-autonomous delayed equations with applications to neural networks. Discrete & Continuous Dynamical Systems, 2007, 18 (2&3) : 517-536. doi: 10.3934/dcds.2007.18.517

[16]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

[17]

Vittorino Pata. Exponential stability in linear viscoelasticity with almost flat memory kernels. Communications on Pure & Applied Analysis, 2010, 9 (3) : 721-730. doi: 10.3934/cpaa.2010.9.721

[18]

Tomás Caraballo, David Cheban. Almost periodic and almost automorphic solutions of linear differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 1857-1882. doi: 10.3934/dcds.2013.33.1857

[19]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6425-6462. doi: 10.3934/dcdsb.2021026

[20]

Sebastián Buedo-Fernández. Global attraction in a system of delay differential equations via compact and convex sets. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3171-3181. doi: 10.3934/dcdsb.2020056

2020 Impact Factor: 1.327

Article outline

Figures and Tables

[Back to Top]