In this paper, we propose a new image denosing model to remove the multiplicative noise by a maximum a posteriori estimation and an inhomogeneous fractional $ 1 $-Laplace evolution equation. The main difficulty of the problem is the equation will become very singular when $ u(x) = u(y) $. The existence and uniqueness of the weak positive solution are proved. Numerical examples demonstrate the better capability of our model on some heavy multiplicative noised images.
Citation: |
[1] |
B. Abdellaoui, A. Attar, R. Bentifour and I. Peral, On fractional $p$-Laplacian parabolic problem with general data, Ann. Mat. Pura Appl., 197 (2018), 329-356.
doi: 10.1007/s10231-017-0682-z.![]() ![]() ![]() |
[2] |
F. Andreu, J. M. Mzaón, J. D. Rossi and J. Toledo, A nonlocal $p$-Laplacian evolution equation with Neumann boundary conditions, J. Math. Pures Appl., 90 (2008), 201-227.
doi: 10.1016/j.matpur.2008.04.003.![]() ![]() ![]() |
[3] |
G. Aubert and J.-F. Aujol, A variational approach to removing multiplicative noise, SIAM J. Appl. Math., 68 (2008), 925-946.
doi: 10.1137/060671814.![]() ![]() ![]() |
[4] |
L. Brasco, E. Lindgren and E. Parini, The fractional Cheeger problem, Interfaces Free Bound., 16 (2004), 419-458.
doi: 10.4171/IFB/325.![]() ![]() ![]() |
[5] |
A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Model. Simul., 4 (2005), 490-530.
doi: 10.1137/040616024.![]() ![]() ![]() |
[6] |
B. Chen, J.-L. Cai, W.-S. Chen and Y. Li, A multiplicative noise removal approach based on partial differential equation model, Math. Probl. Eng., 2012 (2012), Art. ID 242043, 14 pp.
doi: 10.1155/2012/242043.![]() ![]() ![]() |
[7] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
[8] |
F. Dong, H. Zhang and D.-X. Kong, Nonlocal total variation models for multiplicative noise removal using split Bregman iteration, Math. Comput. Modelling, 55 (2012), 939-954.
doi: 10.1016/j.mcm.2011.09.021.![]() ![]() ![]() |
[9] |
W. Feng, H. Lei and Y. Gao, Speckle reduction via higher order total variation approach, IEEE Trans. Image Process., 23 (2014), 1831-1843.
doi: 10.1109/TIP.2014.2308432.![]() ![]() ![]() |
[10] |
G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation, Multiscale Model. Simul., 6 (2007), 595-630.
doi: 10.1137/060669358.![]() ![]() ![]() |
[11] |
G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7 (2008), 1005-1028.
doi: 10.1137/070698592.![]() ![]() ![]() |
[12] |
Z. Guo, J. Yin and Q. Liu, On a reaction-diffusion system applied to image decomposition and restoration, Math. Comput. Modelling, 53 (2011), 1336-1350.
doi: 10.1016/j.mcm.2010.12.031.![]() ![]() ![]() |
[13] |
Y.-M. Huang, M. K. Ng and Y.-W. Wen, A new total variation method for multiplicative noise removal, SIAM J. Imaging Sci., 2 (2009), 20-40.
doi: 10.1137/080712593.![]() ![]() ![]() |
[14] |
Z. Jin and X. Yang, Analysis of a new variational model for multiplicative noise removal, J. Math. Anal. Appl., 362 (2010), 415-426.
doi: 10.1016/j.jmaa.2009.08.036.![]() ![]() ![]() |
[15] |
F. Li, M. K. Ng and C. Shen, Multiplicative noise removal with spatially varying regularization parameters, SIAM J. Imaging Sci., 3 (2010), 1-20.
doi: 10.1137/090748421.![]() ![]() ![]() |
[16] |
Q. Liu, X. Li and T. Gao, A nondivergence $p$-Laplace equation in a removing multiplicative noise model, Nonlinear Anal. RWA, 14 (2013), 2046-2058.
doi: 10.1016/j.nonrwa.2013.02.008.![]() ![]() ![]() |
[17] |
J. M. Mazón, J. D. Rossi and J. Toledo, Fractional $p$-Laplacian evolution equations, J. Math. Pures Appl., 105 (2016), 810-844.
doi: 10.1016/j.matpur.2016.02.004.![]() ![]() ![]() |
[18] |
D. Puhst, On the evolutionary fractional $p$-laplacian, Appl. Math. Res. Express., 2015 (2015), 253-273.
doi: 10.1093/amrx/abv003.![]() ![]() ![]() |
[19] |
L. Rudin, P.-L. Lions and S. Osher, Multiplicative denoising and deblurring: Theory and algorithms, in Geometric Level Set Methods in Imaging, Vision, and Graphics, S. Osher and N. Paragios, eds., Springer, New York, (2003) 103–119.
doi: 10.1007/0-387-21810-6_6.![]() ![]() ![]() |
[20] |
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D: Nonlinear Phenomena, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.![]() ![]() ![]() |
[21] |
S. Segura de León and and C. M. Webler, Global existence and uniqueness for the inhomogeneous $1$-Laplace evolution equation, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 1213-1246.
doi: 10.1007/s00030-015-0320-7.![]() ![]() ![]() |
[22] |
J. Shi and S. Osher, A nonlinear inverse scale space method for a convex multiplicative noise models, SIAM J. Img. Sci., 1 (2008), 294-321.
doi: 10.1137/070689954.![]() ![]() ![]() |
[23] |
J. Simon, Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360.![]() ![]() ![]() |
[24] |
J. Sun, J. Li and Q. Liu, Cauchy problem of a nonlocal $p$-Laplacian evolution equation with nonlocal convection, Nonlinear Anal. TMA, 95 (2014), 691-702.
doi: 10.1016/j.na.2013.09.023.![]() ![]() ![]() |
[25] |
J. L. Vazquez, The Dirichlet problem for the fractional $p$-Laplacian evolution equation, J. Differential Equations, 260 (2016), 6038-6056.
doi: 10.1016/j.jde.2015.12.033.![]() ![]() ![]() |
[26] |
Z. Zhou, Z. Guo, G. Dong, J. Sun, D. Zhang and B. Wu, A doubly degenerate diffusion model based on the gray level indicator for multiplicative noise removal, IEEE Trans. Image Process., 24 (2015), 249-260.
doi: 10.1109/TIP.2014.2376185.![]() ![]() ![]() |
[27] |
Z. Zhou, Z. Guo and B. Y. Wu, A doubly degenerate diffusion equation in multiplicative noise removal models, J. Math. Anal. Appl., 458 (2018), 58-70.
doi: 10.1016/j.jmaa.2017.08.049.![]() ![]() ![]() |
(a) Original image. (b) the noisy image with PSNR = 12.49. (c)Image restored by AA model,
(a) Original image. (b) the noisy image with PSNR = 12.01. (c)Image restored by AA model,