doi: 10.3934/dcdsb.2021256
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

More traveling waves in the Holling-Tanner model with weak diffusion

1. 

Department of Mathematics, Miami University, Hamilton, OH 45011, USA

2. 

Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA

* Corresponding author: Vahagn Manukian

Received  May 2020 Revised  April 2021 Early access November 2021

We identify two new traveling waves of the Holling-Tanner model with weak diffusion. One connects two constant states; at one of them, the model is undefined. The other connects a constant state to a periodic wave train. We exploit the multi-scale structure of the Holling-Tanner model in the weak diffusion limit. Our analysis uses geometric singular perturbation theory, compactification and the blow-up method.

Citation: Vahagn Manukian, Stephen Schecter. More traveling waves in the Holling-Tanner model with weak diffusion. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021256
References:
[1]

S. AiY. Du and R. Peng, Traveling waves for a generalized Holling-Tanner predator-prey model, J. Differential Equations, 263 (2017), 7782-7814.  doi: 10.1016/j.jde.2017.08.021.

[2]

H. Cai, A. Ghazaryan and V. Manukian, Fisher-KPP dynamics in diffusive Rosenzweig-MacArthur and Holling-Tanner models, Math. Model. Nat. Phenom., 14 (2019), Art. 404, 21 pp. doi: 10.1051/mmnp/2019017.

[3]

C. Chicone, Ordinary Differential Equations with Applications, 2$^{nd}$ edition, Springer Texts in Applied Mathematics, 34, Springer, New York, 2006.

[4]

A. Ducrot, Z. Liu and P. Magal, Large speed traveling waves for the Rosenzweig-MacArthur predator-prey model with spatial diffusion, Phys. D, 415 (2021), 132730, 14 pp. doi: 10.1016/j.physd.2020.132730.

[5]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Eqs., 31 (1979), 53-98.  doi: 10.1016/0022-0396(79)90152-9.

[6]

A. GasullR. E Kooij and J. Torregrosa, Limit cycles in the Holling-Tanner model, Publ. Mat., 41 (1997), 149-167.  doi: 10.5565/PUBLMAT_41197_09.

[7]

A. Ghazaryan, V. Manukian and S. Schecter, Traveling waves in the Holling-Tanner model with weak diffusion, Proc. A., 471 (2015), 20150045, 16 pp. doi: 10.1098/rspa.2015.0045.

[8]

C. S. Holling, The characteristics of simple types of predation and parasitism, Canadian Entomologist, 91 (1959), 293-320. 

[9]

S.-B. Hsu and T.-W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math, 55 (1995), 763-783.  doi: 10.1137/S0036139993253201.

[10]

S.-B. Hsu and T.-W. Hwang, Uniqueness of limit cycles for a predator-prey system of Holling and Leslie type, Canad. Appl. Math. Quart., 6 (1998), 91-117. 

[11]

S.-B. Hsu and T.-W. Hwang, Hopf bifurcation analysis for a predator-prey system of Holling and Leslie type, Taiwanese J. Math., 3 (1999), 35-53.  doi: 10.11650/twjm/1500407053.

[12]

C. K. R. T. Jones, Geometric singular perturbation theory, Dynamical Systems (Montecatini Terme, 1994), Lecture Notes in Math., 1609, Springer, (1995), 44–118. doi: 10.1007/BFb0095239.

[13]

C. Kuehn, Multiple Time Scale Dynamics, Springer, New York, 2015. doi: 10.1007/978-3-319-12316-5.

[14]

X. LiW. Jiang and J. Shi, Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model, IMA J. Appl. Math., 78 (2013), 287-306.  doi: 10.1093/imamat/hxr050.

[15]

R. M. May, On relationships among various types of population models, American Naturalist, 107 (1973), 46-57.  doi: 10.1086/282816.

[16] R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, 1974. 
[17]

J. D. Murray, Mathematical Biology, Springer, Berlin, 1989. doi: 10.1007/978-3-662-08539-4.

[18]

L. Perko, Differential Equations and Dynamical Systems, Third edition. Texts in Applied Mathematics, 7, Springer, New York, 2001. doi: 10.1007/978-1-4613-0003-8.

[19] E. Renshaw, Modelling Biological Populations in Space and Time, Cambridge University Press, Cambridge, 1991.  doi: 10.1017/CBO9780511624094.
[20]

E. Sáez and E. González-Olivares, Dynamics of a predator-prey model, SIAM J. Appl. Math., 59 (1999), 1867-1878.  doi: 10.1137/S0036139997318457.

[21]

J. A. Sherratt and M. J. Smith, Periodic travelling waves in cyclic populations: Field studies and reaction-diffusion models, J. R. Soc. Interface, 5 (2008), 483-505.  doi: 10.1098/rsif.2007.1327.

[22]

J. T. Tanner, The stability and the intrinsic growth rates of prey and predator populations, Ecology, 56 (1975), 855-867.  doi: 10.2307/1936296.

show all references

References:
[1]

S. AiY. Du and R. Peng, Traveling waves for a generalized Holling-Tanner predator-prey model, J. Differential Equations, 263 (2017), 7782-7814.  doi: 10.1016/j.jde.2017.08.021.

[2]

H. Cai, A. Ghazaryan and V. Manukian, Fisher-KPP dynamics in diffusive Rosenzweig-MacArthur and Holling-Tanner models, Math. Model. Nat. Phenom., 14 (2019), Art. 404, 21 pp. doi: 10.1051/mmnp/2019017.

[3]

C. Chicone, Ordinary Differential Equations with Applications, 2$^{nd}$ edition, Springer Texts in Applied Mathematics, 34, Springer, New York, 2006.

[4]

A. Ducrot, Z. Liu and P. Magal, Large speed traveling waves for the Rosenzweig-MacArthur predator-prey model with spatial diffusion, Phys. D, 415 (2021), 132730, 14 pp. doi: 10.1016/j.physd.2020.132730.

[5]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Eqs., 31 (1979), 53-98.  doi: 10.1016/0022-0396(79)90152-9.

[6]

A. GasullR. E Kooij and J. Torregrosa, Limit cycles in the Holling-Tanner model, Publ. Mat., 41 (1997), 149-167.  doi: 10.5565/PUBLMAT_41197_09.

[7]

A. Ghazaryan, V. Manukian and S. Schecter, Traveling waves in the Holling-Tanner model with weak diffusion, Proc. A., 471 (2015), 20150045, 16 pp. doi: 10.1098/rspa.2015.0045.

[8]

C. S. Holling, The characteristics of simple types of predation and parasitism, Canadian Entomologist, 91 (1959), 293-320. 

[9]

S.-B. Hsu and T.-W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math, 55 (1995), 763-783.  doi: 10.1137/S0036139993253201.

[10]

S.-B. Hsu and T.-W. Hwang, Uniqueness of limit cycles for a predator-prey system of Holling and Leslie type, Canad. Appl. Math. Quart., 6 (1998), 91-117. 

[11]

S.-B. Hsu and T.-W. Hwang, Hopf bifurcation analysis for a predator-prey system of Holling and Leslie type, Taiwanese J. Math., 3 (1999), 35-53.  doi: 10.11650/twjm/1500407053.

[12]

C. K. R. T. Jones, Geometric singular perturbation theory, Dynamical Systems (Montecatini Terme, 1994), Lecture Notes in Math., 1609, Springer, (1995), 44–118. doi: 10.1007/BFb0095239.

[13]

C. Kuehn, Multiple Time Scale Dynamics, Springer, New York, 2015. doi: 10.1007/978-3-319-12316-5.

[14]

X. LiW. Jiang and J. Shi, Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model, IMA J. Appl. Math., 78 (2013), 287-306.  doi: 10.1093/imamat/hxr050.

[15]

R. M. May, On relationships among various types of population models, American Naturalist, 107 (1973), 46-57.  doi: 10.1086/282816.

[16] R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, 1974. 
[17]

J. D. Murray, Mathematical Biology, Springer, Berlin, 1989. doi: 10.1007/978-3-662-08539-4.

[18]

L. Perko, Differential Equations and Dynamical Systems, Third edition. Texts in Applied Mathematics, 7, Springer, New York, 2001. doi: 10.1007/978-1-4613-0003-8.

[19] E. Renshaw, Modelling Biological Populations in Space and Time, Cambridge University Press, Cambridge, 1991.  doi: 10.1017/CBO9780511624094.
[20]

E. Sáez and E. González-Olivares, Dynamics of a predator-prey model, SIAM J. Appl. Math., 59 (1999), 1867-1878.  doi: 10.1137/S0036139997318457.

[21]

J. A. Sherratt and M. J. Smith, Periodic travelling waves in cyclic populations: Field studies and reaction-diffusion models, J. R. Soc. Interface, 5 (2008), 483-505.  doi: 10.1098/rsif.2007.1327.

[22]

J. T. Tanner, The stability and the intrinsic growth rates of prey and predator populations, Ecology, 56 (1975), 855-867.  doi: 10.2307/1936296.

Figure 2.1.  Equilibria of (2.8): (a) $ 0<\delta<1 $. If $ (\alpha,\beta) $ is in $ \mathcal{R}_2 $ and $ 0<\delta<\delta_h<1-\alpha $, then $ \tilde A $ is an attractor. Otherwise $ \tilde A $ is a repeller. (b) $ \delta>1 $. $ \tilde A $ is a repeller.
Figure 3.1.  Equilibria and positive closed orbits of (2.8) in two cases. (a) A repelling relaxation oscillation for small $ \delta>0 $. (b) Two closed orbits with $ \delta_h<\delta<\delta_t $ in the case of a supercritical Hopf bifurcation.
Figure 3.2.  The flow in the quadrant $ X\ge0, \; Y\ge0 $ of the Poincaré sphere when positive closed orbits are present, in which case we must have $ \beta\delta<2 $. The flow inside the outermost closed orbit is not shown since it can vary.
Figure 3.3.  The flow near the degenerate equilibrium $ (0,0) $ of (3.4) in polar coordinates when $ \beta\delta<2 $. So that the reader can more easily compare this figure with Figure 3.2, the circle $ r = 0 $ is shown upside down, with the point $ (\bar x, \bar y) = (0,1) $ at the bottom of the circle. With some abuse of notation, the equilibria are labeled $ E_1 $ and $ E_2 $ to correspond to the equilibria in the two affine coordinate systems
Figure A.1.  (a) $ \gamma_0 $ and $ \mathcal{K} $. The disk $ \mathcal{D} $ is shaded. (b) $ \gamma_\epsilon $ and $ \mathcal{K} $.
Figure B.1.  The flow in the quadrant $ X\ge0, \; Y\ge0 $ of the Poincaré sphere when $ \beta\delta>2 $
Figure B.2.  The flow near the degenerate equilibrium $ (0,0) $ of (3.4) in polar coordinates when $ \beta\delta>2 $. Compare Figure 3.3.
[1]

Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2239-2255. doi: 10.3934/dcdsb.2021007

[2]

Wenjie Zuo, Junping Shi. Traveling wave solutions of a diffusive ratio-dependent Holling-Tanner system with distributed delay. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1179-1200. doi: 10.3934/cpaa.2018057

[3]

Daifeng Duan, Ben Niu, Junjie Wei. Spatiotemporal dynamics in a diffusive Holling-Tanner model near codimension-two bifurcations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3683-3706. doi: 10.3934/dcdsb.2021202

[4]

Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 943-962. doi: 10.3934/dcdsb.2020148

[5]

Mingxin Wang, Peter Y. H. Pang. Qualitative analysis of a diffusive variable-territory prey-predator model. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 1061-1072. doi: 10.3934/dcds.2009.23.1061

[6]

Shuping Li, Weinian Zhang. Bifurcations of a discrete prey-predator model with Holling type II functional response. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 159-176. doi: 10.3934/dcdsb.2010.14.159

[7]

Liang Zhao, Jianhe Shen. Canards and homoclinic orbits in a slow-fast modified May-Holling-Tanner predator-prey model with weak multiple Allee effect. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022018

[8]

Sampurna Sengupta, Pritha Das, Debasis Mukherjee. Stochastic non-autonomous Holling type-Ⅲ prey-predator model with predator's intra-specific competition. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3275-3296. doi: 10.3934/dcdsb.2018244

[9]

Huiling Li, Peter Y. H. Pang, Mingxin Wang. Qualitative analysis of a diffusive prey-predator model with trophic interactions of three levels. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 127-152. doi: 10.3934/dcdsb.2012.17.127

[10]

Isam Al-Darabsah, Xianhua Tang, Yuan Yuan. A prey-predator model with migrations and delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 737-761. doi: 10.3934/dcdsb.2016.21.737

[11]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[12]

R. P. Gupta, Peeyush Chandra, Malay Banerjee. Dynamical complexity of a prey-predator model with nonlinear predator harvesting. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 423-443. doi: 10.3934/dcdsb.2015.20.423

[13]

Malay Banerjee, Nayana Mukherjee, Vitaly Volpert. Prey-predator model with nonlocal and global consumption in the prey dynamics. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2109-2120. doi: 10.3934/dcdss.2020180

[14]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875

[15]

Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 783-806. doi: 10.3934/dcdss.2009.2.783

[16]

Peng Feng. On a diffusive predator-prey model with nonlinear harvesting. Mathematical Biosciences & Engineering, 2014, 11 (4) : 807-821. doi: 10.3934/mbe.2014.11.807

[17]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[18]

Xinfu Chen, Yuanwei Qi, Mingxin Wang. Steady states of a strongly coupled prey-predator model. Conference Publications, 2005, 2005 (Special) : 173-180. doi: 10.3934/proc.2005.2005.173

[19]

Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536

[20]

Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3271-3284. doi: 10.3934/dcdss.2020129

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (284)
  • HTML views (193)
  • Cited by (0)

Other articles
by authors

[Back to Top]