September  2022, 27(9): 4941-4967. doi: 10.3934/dcdsb.2021259

Inverse scattering transform for the integrable nonlocal Lakshmanan-Porsezian-Daniel equation

School of Mathematics and Institute of Mathematical Physics, China University of Mining and Technology, Xuzhou 221116, China

*Corresponding author: Shou-Fu Tian. *This author is contributed equally as the first author

Received  May 2021 Revised  September 2021 Published  September 2022 Early access  November 2021

Fund Project: The authors are supported by the National Natural Science Foundation of China under Grant No. 11975306, the Natural Science Foundation of Jiangsu Province under Grant No. BK20181351, the Six Talent Peaks Project in Jiangsu Province under Grant No. JY-059, and the Fundamental Research Fund for the Central Universities under the Grant Nos. 2019ZDPY07 and 2019QNA35

In this work, a generalized nonlocal Lakshmanan-Porsezian-Daniel (LPD) equation is introduced, and its integrability as an infinite dimensional Hamilton dynamic system is established. We successfully derive the inverse scattering transform (IST) of the nonlocal LPD equation. The direct scattering problem of the equation is first constructed, and some important symmetries of the eigenfunctions and the scattering data are discussed. By using a novel Left-Right Riemann-Hilbert (RH) problem, the inverse scattering problem is analyzed, and the potential function is recovered. By introducing the special conditions of reflectionless case, the time-periodic soliton solutions formula of the equation is derived successfully. Take $ J = \overline{J} = 1,2,3 $ and $ 4 $ for example, we obtain some interesting phenomenon such as breather-type solitons, arc solitons, three soliton and four soliton. Furthermore, the influence of parameter $ \delta $ on these solutions is further considered via the graphical analysis. Finally, the eigenvalues and conserved quantities are investigated under a few special initial conditions.

Citation: Wei-Kang Xun, Shou-Fu Tian, Tian-Tian Zhang. Inverse scattering transform for the integrable nonlocal Lakshmanan-Porsezian-Daniel equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (9) : 4941-4967. doi: 10.3934/dcdsb.2021259
References:
[1]

M. J. Ablowitz and D. E. Baldwin, Nonlinear shallow ocean-wave soliton interactions on flat beaches, Phys. Rev. E., 86 (2012), 036305.  doi: 10.1103/PhysRevE.86.036305.

[2] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, 1991.  doi: 10.1017/CBO9780511623998.
[3]

M. J. Ablowitz and Z. H. Musslimani, Integrable nonlocal nonlinear Schrödinger equation, Phys. Rev. Lett., 110 (2013), 064105.  doi: 10.1103/PhysRevLett.110.064105.

[4]

M. J. Ablowitz and Z. H. Musslimani, Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation, Nonlinearity, 29 (2016), 915-946.  doi: 10.1088/0951-7715/29/3/915.

[5]

M. J. Ablowitz and Z. H. Musslimani, Integrable nonlocal nonlinear equations, Stud. Appl. Math., 139 (2017), 7-59.  doi: 10.1111/sapm.12153.

[6]

M. J. AblowitzB.-F. FengX-D. Luo and Z. H. Musslimani, Reverse space-time nonlocal Sine-Gordon/Sinh-Gordon equations with nonzero boundary conditions, Stud. Appl. Math., 141 (2018), 267-307.  doi: 10.1111/sapm.12222.

[7]

M. J. Ablowitz and Z. H. Musslimani, Integrable space-time shifted nonlocal nonlinear equations, Phys. Lett. A, 409 (2021), 127516.  doi: 10.1016/j.physleta.2021.127516.

[8] M. J. AblowitzB. Prinari and A. D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, Cambridge University Press, 2004. 
[9]

M. J. Ablowitz and H. Segur, Olitons and the Inverse Scattering Transform, SIAM, 1981.

[10]

E. M. DianovP. Mamyshev and A. M. Prokhorov, Nonlinear fiber optics, Soviet J. Quantum Elect, 18 (1988), 1. 

[11]

A. S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, Proc. R. Soc. Lond. Ser. A., 453 (1962), 1411-1443.  doi: 10.1098/rspa.1997.0077.

[12]

A. S. Fokas, Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation, Nonlinearity, 29 (2016), 319-324.  doi: 10.1088/0951-7715/29/2/319.

[13]

X. Geng and H. Liu, The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation, J. Nonlinear. Sci., 28 (2018), 739-763.  doi: 10.1007/s00332-017-9426-x.

[14]

X. GengH. Liu and J. Zhu, Initial-boundary value problems for the coupled nonlinear Schrödinger equation on the half-line, Stud. Appl. Math., 135 (2015), 310-346.  doi: 10.1111/sapm.12088.

[15]

F.-J. HeE.-G. Fan and J. Xu, Long-time asymptotics for the nonlocal MKdV equation, Commun. Theor. Phys., 71 (2019), 475-488.  doi: 10.1088/0253-6102/71/5/475.

[16] R. Hirota, The Direct Methods in Soliton Theory, Cambridge University Press, Cambridge, 2004.  doi: 10.1017/CBO9780511543043.
[17]

J.-L. Ji and Z.-N. Zhu, Soliton solutions of an integrable nonlocal modified Korteweg-de Vries equation through inverse scattering transform,, J. Math. Anal. Appl., 453 (2017), 973-984.  doi: 10.1016/j.jmaa.2017.04.042.

[18]

B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl., 15 (1970), 539. 

[19] Y. S. Kivshar and G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic press, 2003. 
[20]

M. LakshmananK. Porsezian and M. Daniel, Effect of discreteness on the continuum limit of the Heisenberg spin chain, Phys. Lett. A, 133 (1988), 483-488.  doi: 10.1016/0375-9601(88)90520-8.

[21]

W. LiuD.-Q. QiuZ.-W. Wu and J.-S. He, Dynamical behavior of solution in integrable nonlocal Lakshmanan-Porsezian-Daniel equation, Commun., Theor. Phys., 65 (2016), 671-676.  doi: 10.1088/0253-6102/65/6/671.

[22]

S. Y. Lou, Alice-Bob systems, $P_s$-$T_d$-$C$ principles and multi-soliton solutions, arXiv: nlin/1603.03975.

[23]

W.-X. Ma, Riemann-Hilbert problems and $N$-soliton solutions for a coupled mKdV system., J. Geom. Phys., 132 (2018), 45-54.  doi: 10.1016/j.geomphys.2018.05.024.

[24]

W.-X. Ma, Inverse scattering for nonlocal reverse-time nonlinear Schrödinger equations, Appl. Math. Lett., 102 (2020), 106161.  doi: 10.1016/j.aml.2019.106161.

[25]

W.-X. Ma and X. Geng, Bäcklund transformations of soliton systems from symmetry constraints, CRM Proceedings and Lecture Notes, 29 (2001), 313-323.  doi: 10.1090/crmp/029/28.

[26]

V. B. Matveev, Darboux transformation and explicit solutions of the Kadomtcev-Petviaschvily equation, depending on functional parameters, Lett. Math. Phys., 3 (1979), 213-216.  doi: 10.1007/BF00405295.

[27]

S. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method, Springer Science & Business Media, 1984.

[28]

W.-Q. PengS.-F. TianT.-T. Zhang and Y. Fang, Rational and semi-rational solutions of a nonlocal (2+1)-dimensional nonlinear Schrödinger equation, Math. Meth. Appl. Sci., 42 (2019), 6865-6877.  doi: 10.1002/mma.5792.

[29]

K. PorsezianM. Daniel and M. Lakshmanan, On the integrability aspects of the one-dimensional classical continuum isotropic biquadratic Heisenberg spin chain, J. Math. Phys., 33 (1992), 1807-1816.  doi: 10.1063/1.529658.

[30]

J. RaoY. ZhangA. S. Fokas and J. He, Rogue waves of the nonlocal Davey-Stewartson I equation, Nonlinearity, 31 (2018), 4090-4107.  doi: 10.1088/1361-6544/aac761.

[31]

J. WangH. Wu and D.-J. Zhang, Solutions of the nonlocal (2+1)-D breaking solitons hierarchy and the negative order AKNS hierarchy, Commun. Theor. Phys., 72 (2020), 045002-45014. 

[32]

D.-S. Wang, D.-J. Zhang and J. Yang, Integrable properties of the general coupled nonlinear Schrdinger equations, J. Math. Phys., 51 (2010), 023510, 17 pp. doi: 10.1063/1.3290736.

[33]

L. H. WangK. Porsezian and J. S. He, Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation, Phys. Rev. E, 87 (2013), 053202.  doi: 10.1103/PhysRevE.87.053202.

[34]

W. Weng and Z. Yan, Inverse scattering and N-triple-pole soliton and breather solutions of the focusing nonlinear Schrödinger hierarchy with nonzero boundary conditions, Phys. Lett. A, 407 (2021), 127472.  doi: 10.1016/j.physleta.2021.127472.

[35]

Z. Yan, An initial-boundary value problem for the integrable spin-1 Gross-Pitaevskii equations with a 4$\times$ 4 Lax pair on the half-line, Chaos., 27 (2017), 053117.  doi: 10.1063/1.4984025.

[36]

Z. Yan, Integrable PT-symmetric local and nonlocal vector nonlinear Schrödinger equations: A unified two-parameter model, Appl. Math. Lett., 47 (2015), 61-68.  doi: 10.1016/j.aml.2015.02.025.

[37]

B. Yang and J. Yang, Transformations between nonlocal and local integrable equations, Stud. Appl. Math., 140 (2018), 178-201.  doi: 10.1111/sapm.12195.

[38]

Y. Yang and E. Fan, Riemann-Hilbert approach to the modified nonlinear Schrödinger equation with non-vanishing asymptotic boundary conditions, Phys. D, 417 (2021), Paper No. 132811, 20 pp, arXiv e-prints, 2019. doi: 10.1016/j.physd.2020.132811.

[39]

G. Zhang and Z. Yan, The derivative nonlinear Schrödinger equation with zero/nonzero boundary conditions: Inverse scattering transforms and N-double-pole solutions, J. Nonlinear Sci., 30 (2020), 3089-3127.  doi: 10.1007/s00332-020-09645-6.

[40]

G. Zhang and Z. Yan, Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions, Phys. D, 402 (2020), 132170.  doi: 10.1016/j.physd.2019.132170.

[41]

G. Zhang and Z. Yan, Focusing and defocusing mKdV equations with nonzero boundary conditions: Inverse scattering transforms and soliton interactions, Phys. D, 410 (2020), 132521.  doi: 10.1016/j.physd.2020.132521.

[42]

Z.-X. Zhou, Darboux transformations and global explicit solutions for nonlocal Davey-Stewartson I equation, Stud. Appl. Math., 141 (2018), 186-204.  doi: 10.1111/sapm.12219.

show all references

References:
[1]

M. J. Ablowitz and D. E. Baldwin, Nonlinear shallow ocean-wave soliton interactions on flat beaches, Phys. Rev. E., 86 (2012), 036305.  doi: 10.1103/PhysRevE.86.036305.

[2] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, 1991.  doi: 10.1017/CBO9780511623998.
[3]

M. J. Ablowitz and Z. H. Musslimani, Integrable nonlocal nonlinear Schrödinger equation, Phys. Rev. Lett., 110 (2013), 064105.  doi: 10.1103/PhysRevLett.110.064105.

[4]

M. J. Ablowitz and Z. H. Musslimani, Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation, Nonlinearity, 29 (2016), 915-946.  doi: 10.1088/0951-7715/29/3/915.

[5]

M. J. Ablowitz and Z. H. Musslimani, Integrable nonlocal nonlinear equations, Stud. Appl. Math., 139 (2017), 7-59.  doi: 10.1111/sapm.12153.

[6]

M. J. AblowitzB.-F. FengX-D. Luo and Z. H. Musslimani, Reverse space-time nonlocal Sine-Gordon/Sinh-Gordon equations with nonzero boundary conditions, Stud. Appl. Math., 141 (2018), 267-307.  doi: 10.1111/sapm.12222.

[7]

M. J. Ablowitz and Z. H. Musslimani, Integrable space-time shifted nonlocal nonlinear equations, Phys. Lett. A, 409 (2021), 127516.  doi: 10.1016/j.physleta.2021.127516.

[8] M. J. AblowitzB. Prinari and A. D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, Cambridge University Press, 2004. 
[9]

M. J. Ablowitz and H. Segur, Olitons and the Inverse Scattering Transform, SIAM, 1981.

[10]

E. M. DianovP. Mamyshev and A. M. Prokhorov, Nonlinear fiber optics, Soviet J. Quantum Elect, 18 (1988), 1. 

[11]

A. S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, Proc. R. Soc. Lond. Ser. A., 453 (1962), 1411-1443.  doi: 10.1098/rspa.1997.0077.

[12]

A. S. Fokas, Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation, Nonlinearity, 29 (2016), 319-324.  doi: 10.1088/0951-7715/29/2/319.

[13]

X. Geng and H. Liu, The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation, J. Nonlinear. Sci., 28 (2018), 739-763.  doi: 10.1007/s00332-017-9426-x.

[14]

X. GengH. Liu and J. Zhu, Initial-boundary value problems for the coupled nonlinear Schrödinger equation on the half-line, Stud. Appl. Math., 135 (2015), 310-346.  doi: 10.1111/sapm.12088.

[15]

F.-J. HeE.-G. Fan and J. Xu, Long-time asymptotics for the nonlocal MKdV equation, Commun. Theor. Phys., 71 (2019), 475-488.  doi: 10.1088/0253-6102/71/5/475.

[16] R. Hirota, The Direct Methods in Soliton Theory, Cambridge University Press, Cambridge, 2004.  doi: 10.1017/CBO9780511543043.
[17]

J.-L. Ji and Z.-N. Zhu, Soliton solutions of an integrable nonlocal modified Korteweg-de Vries equation through inverse scattering transform,, J. Math. Anal. Appl., 453 (2017), 973-984.  doi: 10.1016/j.jmaa.2017.04.042.

[18]

B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl., 15 (1970), 539. 

[19] Y. S. Kivshar and G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic press, 2003. 
[20]

M. LakshmananK. Porsezian and M. Daniel, Effect of discreteness on the continuum limit of the Heisenberg spin chain, Phys. Lett. A, 133 (1988), 483-488.  doi: 10.1016/0375-9601(88)90520-8.

[21]

W. LiuD.-Q. QiuZ.-W. Wu and J.-S. He, Dynamical behavior of solution in integrable nonlocal Lakshmanan-Porsezian-Daniel equation, Commun., Theor. Phys., 65 (2016), 671-676.  doi: 10.1088/0253-6102/65/6/671.

[22]

S. Y. Lou, Alice-Bob systems, $P_s$-$T_d$-$C$ principles and multi-soliton solutions, arXiv: nlin/1603.03975.

[23]

W.-X. Ma, Riemann-Hilbert problems and $N$-soliton solutions for a coupled mKdV system., J. Geom. Phys., 132 (2018), 45-54.  doi: 10.1016/j.geomphys.2018.05.024.

[24]

W.-X. Ma, Inverse scattering for nonlocal reverse-time nonlinear Schrödinger equations, Appl. Math. Lett., 102 (2020), 106161.  doi: 10.1016/j.aml.2019.106161.

[25]

W.-X. Ma and X. Geng, Bäcklund transformations of soliton systems from symmetry constraints, CRM Proceedings and Lecture Notes, 29 (2001), 313-323.  doi: 10.1090/crmp/029/28.

[26]

V. B. Matveev, Darboux transformation and explicit solutions of the Kadomtcev-Petviaschvily equation, depending on functional parameters, Lett. Math. Phys., 3 (1979), 213-216.  doi: 10.1007/BF00405295.

[27]

S. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method, Springer Science & Business Media, 1984.

[28]

W.-Q. PengS.-F. TianT.-T. Zhang and Y. Fang, Rational and semi-rational solutions of a nonlocal (2+1)-dimensional nonlinear Schrödinger equation, Math. Meth. Appl. Sci., 42 (2019), 6865-6877.  doi: 10.1002/mma.5792.

[29]

K. PorsezianM. Daniel and M. Lakshmanan, On the integrability aspects of the one-dimensional classical continuum isotropic biquadratic Heisenberg spin chain, J. Math. Phys., 33 (1992), 1807-1816.  doi: 10.1063/1.529658.

[30]

J. RaoY. ZhangA. S. Fokas and J. He, Rogue waves of the nonlocal Davey-Stewartson I equation, Nonlinearity, 31 (2018), 4090-4107.  doi: 10.1088/1361-6544/aac761.

[31]

J. WangH. Wu and D.-J. Zhang, Solutions of the nonlocal (2+1)-D breaking solitons hierarchy and the negative order AKNS hierarchy, Commun. Theor. Phys., 72 (2020), 045002-45014. 

[32]

D.-S. Wang, D.-J. Zhang and J. Yang, Integrable properties of the general coupled nonlinear Schrdinger equations, J. Math. Phys., 51 (2010), 023510, 17 pp. doi: 10.1063/1.3290736.

[33]

L. H. WangK. Porsezian and J. S. He, Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation, Phys. Rev. E, 87 (2013), 053202.  doi: 10.1103/PhysRevE.87.053202.

[34]

W. Weng and Z. Yan, Inverse scattering and N-triple-pole soliton and breather solutions of the focusing nonlinear Schrödinger hierarchy with nonzero boundary conditions, Phys. Lett. A, 407 (2021), 127472.  doi: 10.1016/j.physleta.2021.127472.

[35]

Z. Yan, An initial-boundary value problem for the integrable spin-1 Gross-Pitaevskii equations with a 4$\times$ 4 Lax pair on the half-line, Chaos., 27 (2017), 053117.  doi: 10.1063/1.4984025.

[36]

Z. Yan, Integrable PT-symmetric local and nonlocal vector nonlinear Schrödinger equations: A unified two-parameter model, Appl. Math. Lett., 47 (2015), 61-68.  doi: 10.1016/j.aml.2015.02.025.

[37]

B. Yang and J. Yang, Transformations between nonlocal and local integrable equations, Stud. Appl. Math., 140 (2018), 178-201.  doi: 10.1111/sapm.12195.

[38]

Y. Yang and E. Fan, Riemann-Hilbert approach to the modified nonlinear Schrödinger equation with non-vanishing asymptotic boundary conditions, Phys. D, 417 (2021), Paper No. 132811, 20 pp, arXiv e-prints, 2019. doi: 10.1016/j.physd.2020.132811.

[39]

G. Zhang and Z. Yan, The derivative nonlinear Schrödinger equation with zero/nonzero boundary conditions: Inverse scattering transforms and N-double-pole solutions, J. Nonlinear Sci., 30 (2020), 3089-3127.  doi: 10.1007/s00332-020-09645-6.

[40]

G. Zhang and Z. Yan, Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions, Phys. D, 402 (2020), 132170.  doi: 10.1016/j.physd.2019.132170.

[41]

G. Zhang and Z. Yan, Focusing and defocusing mKdV equations with nonzero boundary conditions: Inverse scattering transforms and soliton interactions, Phys. D, 410 (2020), 132521.  doi: 10.1016/j.physd.2020.132521.

[42]

Z.-X. Zhou, Darboux transformations and global explicit solutions for nonlocal Davey-Stewartson I equation, Stud. Appl. Math., 141 (2018), 186-204.  doi: 10.1111/sapm.12219.

Figure 1.  One-soliton solution with parameters $ \delta = 1 $, $ \theta_1 = \frac{\pi}{3} $, $ \overline{\theta}_1 = - \frac{\pi}{3} $, $ \zeta_1 = 0.8i $ and $ \overline{\zeta}_1 = -0.8i $. $ \textbf{(a)} $: the structures of the one-soliton solution, $ \textbf{(b)} $: the density plot, $ \textbf{(c)} $: the wave propagation of the one-soliton solution
Figure 2.  Two-soliton solutions with parameters $ \theta_1 = \frac{2}{3}\pi $, $ \theta_2 = \frac{3}{8}\pi $, $ \overline{\theta}_1 = \frac{2}{3}\pi $, $ \overline{\theta}_2 = \frac{3}{5}\pi $, $ \zeta_1 = 0.7+0.5i $, $ \zeta_2 = -0.7+0.5i $, $ \overline{\zeta}_1 = 0.7-0.5i $ and $ \overline{\zeta}_2 = -0.7-0.5i $. $ \textbf{(a)(b)(c)} $: the structures and the wave propagation of the two-soliton solutions with $ \delta = 5 $, $ \textbf{(d)(e)(f)} $: the structures and the wave propagation of the two-soliton solutions with $ \delta = 3 $, $ \textbf{(g)(h)(i)} $: the structures and the wave propagation of the two-soliton solutions with $ \delta = 1 $
Figure 3.  Breather-type solution with parameters $ \delta = 1 $, $ \theta_1 = \frac{2}{3}\pi $, $ \theta_2 = \frac{3}{8}\pi $, $ \overline{\theta}_1 = \frac{2}{3}\pi $, $ \overline{\theta}_2 = \frac{3}{5}\pi $, $ \zeta_1 = 0.1i $, $ \zeta_2 = 0.2i $, $ \overline{\zeta}_1 = -0.1i $ and $ \overline{\zeta}_2 = -0.2i $. $ \textbf{(a)} $: the structures of the breather-type solution, $ \textbf{(b)} $: the density plot, $ \textbf{(c)} $: the wave propagation of the breather-type solution
Figure 4.  Three-soliton solutions with parameters $ \theta_1 = \theta_2 = \theta_3 = \frac{\pi}{3} $, $ \overline{\theta}_1 = \overline{\theta}_2 = \overline{\theta}_3 = \frac{\pi}{9} $, $ \zeta_1 = 0.3i $, $ \zeta_2 = 0.5i $, $ \zeta_3 = 0.7i $, $ \overline{\zeta}_1 = -0.3i $, $ \overline{\zeta}_2 = -0.5i $ and $ \overline{\zeta}_3 = -0.7i $. $ \textbf{(a)(b)(c)} $: the structures and the wave propagation of the three-soliton solutions with $ \delta = 1 $, $ \textbf{(d)(e)(f)} $: the structures and the wave propagation of the three-soliton solutions with $ \delta = 2 $, $ \textbf{(g)(h)(i)} $: the structures and the wave propagation of the three-soliton solutions with $ \delta = 3 $
Figure 5.  Three-soliton solutions with parameters $ \theta_1 = \theta_2 = \theta_3 = \frac{\pi}{3} $, $ \overline{\theta}_1 = \overline{\theta}_2 = \overline{\theta}_3 = \frac{\pi}{9} $, $ \zeta_1 = 0.3+0.5i $, $ \zeta_2 = -0.3+0.5i $, $ \zeta_3 = 0.6i $, $ \overline{\zeta}_1 = 0.3-0.5i $, $ \overline{\zeta}_2 = -0.3-0.5i $ and $ \overline{\zeta}_3 = -0.6i $. $ \textbf{(a)(b)(c)} $: the structures and the wave propagation of the three-soliton solutions with $ \delta = 2 $, $ \textbf{(d)(e)(f)} $: the structures and the wave propagation of the three-soliton solutions with $ \delta = 1 $, $ \textbf{(g)(h)(i)} $: the structures and the wave propagation of the three-soliton solutions with $ \delta = 0.5 $
Figure 6.  Four-soliton solution with parameters $ \delta = 1 $, $ \theta_1 = \theta_2 = \theta_3 = \theta_4 = \frac{\pi}{6} $, $ \overline{\theta}_1 = \overline{\theta}_2 = \overline{\theta}_3 = \overline{\theta}_4 = \frac{\pi}{8} $, $ \zeta_1 = 0.1i $, $ \zeta_2 = 0.2i $, $ \zeta_3 = 0.3i $, $ \zeta_4 = 0.4i $, $ \overline{\zeta}_1 = -0.1i $, $ \overline{\zeta}_2 = -0.2i $, $ \overline{\zeta}_3 = -0.3i $ and $ \overline{\zeta}_4 = -0.4i $. $ \textbf{(a)} $: the structures of the four-soliton solution, $ \textbf{(b)} $: the density plot, $ \textbf{(c)} $: the wave propagation of the four-soliton solution
Figure 7.  Four-soliton solution with parameters $ \delta = 1 $, $ \theta_1 = \theta_2 = \theta_3 = \theta_4 = \frac{\pi}{6} $, $ \overline{\theta}_1 = \overline{\theta}_2 = \overline{\theta}_3 = \overline{\theta}_4 = \frac{\pi}{8} $, $ \zeta_1 = 0.1+0.2i $, $ \zeta_2 = -0.1+0.2i $, $ \zeta_3 = 0.3i $, $ \zeta_4 = 0.4i $, $ \overline{\zeta}_1 = 0.1-0.2i $, $ \overline{\zeta}_2 = -0.1-0.2i $, $ \overline{\zeta}_3 = -0.3i $ and $ \overline{\zeta}_4 = -0.4i $. $ \textbf{(a)} $: the structures of the four-soliton solution, $ \textbf{(b)} $: the density plot, $ \textbf{(c)} $: the wave propagation of the four-soliton solution
Figure 8.  Four-soliton solution with parameters $ \delta = 1 $, $ \theta_1 = \theta_2 = \theta_3 = \theta_4 = \frac{\pi}{6} $, $ \overline{\theta}_1 = \overline{\theta}_2 = \overline{\theta}_3 = \overline{\theta}_4 = \frac{\pi}{8} $, $ \zeta_1 = 0.1+0.2i $, $ \zeta_2 = -0.1+0.2i $, $ \zeta_3 = 0.4+0.3i $, $ \zeta_4 = -0.4+0.3i $, $ \overline{\zeta}_1 = 0.1-0.2i $, $ \overline{\zeta}_2 = -0.1-0.2i $, $ \overline{\zeta}_3 = 0.4-0.3i $ and $ \overline{\zeta}_4 = -0.4-0.3i $. $ \textbf{(a)} $: the structures of the four-soliton solution, $ \textbf{(b)} $: the density plot, $ \textbf{(c)} $: the wave propagation of the four-soliton solution
[1]

Hajar Farhan Ismael, Haci Mehmet Baskonus, Hasan Bulut. Abundant novel solutions of the conformable Lakshmanan-Porsezian-Daniel model. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2311-2333. doi: 10.3934/dcdss.2020398

[2]

Yuan Li, Shou-Fu Tian. Inverse scattering transform and soliton solutions of an integrable nonlocal Hirota equation. Communications on Pure and Applied Analysis, 2022, 21 (1) : 293-313. doi: 10.3934/cpaa.2021178

[3]

Peijun Li, Ganghua Yuan. Increasing stability for the inverse source scattering problem with multi-frequencies. Inverse Problems and Imaging, 2017, 11 (4) : 745-759. doi: 10.3934/ipi.2017035

[4]

Georgi Grahovski, Rossen Ivanov. Generalised Fourier transform and perturbations to soliton equations. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 579-595. doi: 10.3934/dcdsb.2009.12.579

[5]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[6]

Weipeng Hu, Zichen Deng, Yuyue Qin. Multi-symplectic method to simulate Soliton resonance of (2+1)-dimensional Boussinesq equation. Journal of Geometric Mechanics, 2013, 5 (3) : 295-318. doi: 10.3934/jgm.2013.5.295

[7]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems and Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[8]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems and Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[9]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[10]

John P. Albert. A uniqueness result for 2-soliton solutions of the Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3635-3670. doi: 10.3934/dcds.2019149

[11]

C. Brändle, E. Chasseigne, Raúl Ferreira. Unbounded solutions of the nonlocal heat equation. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1663-1686. doi: 10.3934/cpaa.2011.10.1663

[12]

Changfeng Gui, Zhenbu Zhang. Spike solutions to a nonlocal differential equation. Communications on Pure and Applied Analysis, 2006, 5 (1) : 85-95. doi: 10.3934/cpaa.2006.5.85

[13]

Masaya Maeda, Hironobu Sasaki, Etsuo Segawa, Akito Suzuki, Kanako Suzuki. Scattering and inverse scattering for nonlinear quantum walks. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3687-3703. doi: 10.3934/dcds.2018159

[14]

Francesco Demontis, Cornelis Van der Mee. Novel formulation of inverse scattering and characterization of scattering data. Conference Publications, 2011, 2011 (Special) : 343-350. doi: 10.3934/proc.2011.2011.343

[15]

Martin Bauer, Martins Bruveris, Philipp Harms, Peter W. Michor. Soliton solutions for the elastic metric on spaces of curves. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1161-1185. doi: 10.3934/dcds.2018049

[16]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems and Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

[17]

Leonardo Marazzi. Inverse scattering on conformally compact manifolds. Inverse Problems and Imaging, 2009, 3 (3) : 537-550. doi: 10.3934/ipi.2009.3.537

[18]

Siamak RabieniaHaratbar. Inverse scattering and stability for the biharmonic operator. Inverse Problems and Imaging, 2021, 15 (2) : 271-283. doi: 10.3934/ipi.2020064

[19]

A. Carati. On the existence of scattering solutions for the Abraham-Lorentz-Dirac equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 471-480. doi: 10.3934/dcdsb.2006.6.471

[20]

Lele Du, Minbo Yang. Uniqueness and nondegeneracy of solutions for a critical nonlocal equation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5847-5866. doi: 10.3934/dcds.2019219

2021 Impact Factor: 1.497

Article outline

Figures and Tables

[Back to Top]