Article Contents
Article Contents

# Threshold dynamics of a reaction-diffusion-advection Leslie-Gower predator-prey system

• * Corresponding author: Guohong Zhang

G.-H. Zhang is partially supported by grants from National Science Foundation of China(11871403); X.-L. Wang is partially supported by grants from Fundamental Research Funds for the Central Universities (XDJK2020B050)

• In this paper, we investigate the global dynamics of a Leslie-Gower predator-prey system in advective homogeneous environments. We discuss the existence and uniqueness of positive steady-state solutions. We study the large time behavior of solutions and establish threshold conditions for persistence and extinction of two species when they live in open advective environments. Numerical simulations indicate that the introduction of advection leads to the evolution of spatial distribution patterns of species and specially it may induce spatial separation of the prey and predator under some conditions.

Mathematics Subject Classification: Primary: 35K57, 35B32; Secondary: 35B35, 35B36, 37L15, 92C15.

 Citation:

• Figure 1.  Bifurcation diagrams of steady state solutions to (3) in open advective environments with the bifurcation parameter $q$. The fixed parameter values $b = 1$, $a = 1, c = 10, L = 10$. (a) $d_1 = d_2 = 0.01,r_1 = 5,r_2 = 6$; (b) $d_1 = 0.1,d_2 = 0.15,r_1 = r_2 = 5$; (c) $d_1 = d_2 = 0.1,r_1 = r_2 = 16$; (d) $d_1 = d_2 = 0.15,r_1 = 5,r_2 = 2$; (e) $d_1 = 0.15,d_2 = 0.1,r_1 = r_2 = 12$

Figure 2.  Evolution of spatial distribution patterns on $[0,L]$ with different advection speeds after a long time (t = 3000). Here $b = 1$ and $q^*(d_1,r_1,b)\le q^*(d_2,r_2,b)$. The fixed parameter values $a = 1, c = 10, L = 10,d_1 = 0.1,d_2 = 0.15,r_1 = r_2 = 5$.(a) $q = 1.7$, (b) $q = 1.9$, (c) $q = 2$

Figure 3.  Evolution of spatial distribution patterns on $[0,L]$ with different advection speeds after a long time (t = 3000). Here $b = 1$ and $q^*(d_1,r_1,b)>q^*(d_2,r_2,b)$. The fixed parameter values $a = 1, c = 10, L = 10,d_1 = 0.15,d_2 = 0.1,r_1 = r_2 = 12$. (a) $q = 1.5$, (b) $q = 3.3$, (c) $q = 3.38$, (d) $q = 3.8$, (e)$q = 3.875$, (f) $q = 4$

Figure 4.  Bifurcation diagrams of steady state solutions to (3) with the bifurcation parameter $q$ when the advective environments is closed. The fixed parameter values $b = 0,$ $a = 1, c = 10, L = 10$, $d_1 = 0.15,d_2 = 0.1,r_1 = 30,r_2 = 9$

Figure 5.  Evolution of the stable steady-state spatial distribution patterns of species on $[0,L]$ with different advection speeds after a long time (t = 3000). Here $b = 0$. The fixed parameter values $a = 1, c = 10, L = 10,d_1 = 0.15,d_2 = 0.1,r_1 = 30,r_2 = 9$. (a) $q = 0.1$, (b) $q = 2.5$, (c) $q = 3$, (d) $q = 7.2$, (e) $q = 20$

•  [1] T. Agrawal and M. Saleem, Complex dynamics in a ratio-dependent two-predator one-prey model, Comput. Appl. Math., 34 (2015), 265-274.  doi: 10.1007/s40314-014-0115-1. [2] M. A. Aziz-Alaoui, Study of a Leslie-Gower-type tritrophic population model, Chaos Solitons Fractals, 14 (2002), 1275-1293.  doi: 10.1016/S0960-0779(02)00079-6. [3] M. A. Aziz-Alaoui and M. D. Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes, Appl. Math. Lett., 16 (2003), 1069-1075.  doi: 10.1016/S0893-9659(03)90096-6. [4] M. Ballyk, L. Dung, D. A. Jones and H. L. Smith, Effects of random motility on microbial growth and competition in a flow reactor, SIAM J. Appl. Math., 59 (1999), 573-596.  doi: 10.1137/S0036139997325345. [5] A. A. Berryman, The orgins and evolution of predator-prey theory, Ecology, 73 (1992), 1530-1535.  doi: 10.2307/1940005. [6] Y. Cai, C. Zhao, W. Wang and J. Wang, Dynamics of a Leslie-Gower predator-prey model with additive Allee effect, Appl. Math. Model., 39 (2015), 2092-2106.  doi: 10.1016/j.apm.2014.09.038. [7] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296. [8] F. Chen, L. Chen and X. Xie, On a Leslie-Gower predator-prey model incorporating a prey refuge, Nonlinear Anal. RWA, 10 (2009), 2905-2908.  doi: 10.1016/j.nonrwa.2008.09.009. [9] S. Chen and J. Shi, Global stability in a diffusive Holling-Tanner predator-prey model, Appl. Math. Lett., 25 (2012), 614-618.  doi: 10.1016/j.aml.2011.09.070. [10] S. Chen, J. Shi and J. Wei, Global stability and hopf bifurcation in a delayed diffusion Leslie-Gower predator-prey system, Int. J. Bifurcation Chaos, 22 (2012), 1250061, 11 pp. doi: 10.1142/S0218127412500617. [11] K. A. Dahmen, D. R. Nelson and N. M. Shnerb, Life and death near a windy oasis, J. Math. Biol., 41 (2000), 1-23.  doi: 10.1007/s002850000025. [12] M. M. Desai and D. R. Nelson, A quasispecies on a moving oasis, Theor. Popul. Biol., 67 (2005), 33-45.  doi: 10.1016/j.tpb.2004.07.005. [13] Y. Du and S.-B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Differential Equations, 203 (2004), 331-364.  doi: 10.1016/j.jde.2004.05.010. [14] Y. Du, R. Peng and M. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differential Equations, 246 (2009), 3932-3956.  doi: 10.1016/j.jde.2008.11.007. [15] Y. Du and M. Wang, Asymptotic behaviour of positive steady states to a predator-prey model, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 759-778.  doi: 10.1017/S0308210500004704. [16] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2$^nd$ edition, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0. [17] J. Giné and C. Valls, Nonlinear oscillations in the modified Leslie-Gower model, Nonlinear Anal. RWA, 51 (2020), 103010.  doi: 10.1016/j.nonrwa.2019.103010. [18] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Springer, Berlin, 2008. [19] F. M. Hilker and M. A. Lewis, Predator-prey systems in streams and rivers, Theor. Ecol., 3 (2010), 175-193.  doi: 10.1007/s12080-009-0062-4. [20] C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Ent. Soc. Can., 97 (1965), 5-60.  doi: 10.4039/entm9745fv. [21] S. B. Hsu and T. W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55 (1995), 763-783.  doi: 10.1137/S0036139993253201. [22] S.-B. Hsu and T.-W. Huang, Hopf bifurcation analysis for a predator-prey system of Holling and Leslie type, Taiwanese J. Math., 3 (1999), 35-53.  doi: 10.11650/twjm/1500407053. [23] M. G. Kre$\mathop {\rm{i}}\limits^ \vee$n and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Usp. Mat. Nauk., 3 (1948), 3-95. [24] K.-Y. Lam, Y. Lou and F. Lutscher, Evolution of dispersal in closed advective environments, J. Biol. Dyn., 9 (2015), 188-212.  doi: 10.1080/17513758.2014.969336. [25] P. H. Leslie, Some further notes on the use of matrices in population mathematics, Biometrika, 35 (1948), 213-245.  doi: 10.1093/biomet/35.3-4.213. [26] P. H. Leslie, A stochastic model for studying the properties of certain biological systems by numerical methods, Biometrika, 45 (1958), 16-31.  doi: 10.1093/biomet/45.1-2.16. [27] C. Letellier, L. A. Aguirre, J. Maquet and M. A. Aziz-Alaoui, Should all the species of a food chain be counted to investigate the global dynamics?, Chaos Solitons Fractals, 13 (2002), 1099-1113.  doi: 10.1016/S0960-0779(01)00116-3. [28] C. Letellier and M. A. Aziz-Alaoui, Analysis of the dynamics of a realistic ecological model, Chaos Solitons Fractals, 13 (2002), 95-107.  doi: 10.1016/S0960-0779(00)00239-3. [29] X. Li, W. Jiang and J. Shi, Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model, IMA. J. Appl. Math., 78 (2013), 287-306.  doi: 10.1093/imamat/hxr050. [30] Y. Li and D. Xiao, Bifurcations of a predator-prey system of Holling and Leslie types, Chaos Solitons Fractals, 34 (2007), 606-620.  doi: 10.1016/j.chaos.2006.03.068. [31] Z. Liang and H. Pan, Qualitative analysis of a ratio-dependent holling-tanner model, J. Math. Anal. Appl., 334 (2007), 954-964.  doi: 10.1016/j.jmaa.2006.12.079. [32] J. López-Gómez and R. M. Pardo, Invertibility of linear noncooperative elliptic systems, Nonlinear Anal., 31 (1998), 687-699.  doi: 10.1016/S0362-546X(97)00640-8. [33] A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, New York, 1925. [34] Y. Lou and F. Lutscher, Evolution of dispersal in open advective environments, J. Math. Biol., 69 (2014), 1319-1342.  doi: 10.1007/s00285-013-0730-2. [35] Y. Lou, H. Nie and Y. Wang, Coexistence and bistability of a competition model in open advective environments, Math. Biosci., 306 (2018), 10-19.  doi: 10.1016/j.mbs.2018.09.013. [36] Y. Lou and P. Zhou, Evolution of dispersal in advective homogeneous environment: The effect of boundary conditions, J. Differential Equations, 259 (2015), 141-171.  doi: 10.1016/j.jde.2015.02.004. [37] Z.-P. Ma, Spatiotemporal dynamics of a diffusive Leslie-Gower prey-predator model with strong Allee effect, Nonlinear Anal. RWA, 50 (2019), 651-674.  doi: 10.1016/j.nonrwa.2019.06.008. [38] W. Ni and M. Wang, Dynamics and patterns of a diffusive Leslie-Gower prey-predator model with strong Allee effect in prey, J. Differential Equations, 7 (2016), 4244-4274.  doi: 10.1016/j.jde.2016.06.022. [39] H. Nie, B. Wang and J. Wu, Invasion analysis on a predator-prey system in open advective environments, J. Math. Biol., 81 (2020), 1429-1463.  doi: 10.1007/s00285-020-01545-3. [40] A. F. Nindjin and M. A. Aziz-Alaoui, Persistence and global stability in a delayed Leslie-Gower type three species food chain, J. Math. Anal. Appl., 340 (2008), 340-357.  doi: 10.1016/j.jmaa.2007.07.078. [41] A. F. Nindjin, M. A. Aziz-Alaoui and M. Cadivel, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes with time delay, Nonlinear Anal. RWA, 7 (2006), 1104-1118.  doi: 10.1016/j.nonrwa.2005.10.003. [42] L. Nirenberg, Topics in Nonlinear Functional Analysis, New York University, Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence, RI, 2001. doi: 10.1090/cln/006. [43] R. Peng and M. Wang, Global stability of the equilibrium of a diffusive Holling-Tanner prey-predator model, Appl. Math. Lett., 20 (2007), 664-670.  doi: 10.1016/j.aml.2006.08.020. [44] R. Peng and M. Wang, Positive steady states of the Holling-Tanner prey-predator model with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 149-164.  doi: 10.1017/S0308210500003814. [45] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983. [46] O. Vasilyeva and F. Lutscher, How flow speed alters competitive outcome in advective environments, Bull. Math. Biol., 74 (2012), 2935-2958.  doi: 10.1007/s11538-012-9792-3. [47] V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 119 (1927), 12-13.  doi: 10.1038/119012b0. [48] M. Wang, P. Y. H. Pang and W. Chen, Sharp spatial patterns of the diffusive Holling-Tanner prey-predator model in heterogeneous environment, IMA. J. Appl. Math., 73 (2008), 815-835.  doi: 10.1093/imamat/hxn016. [49] Y. Wang, J. Shi and J. Wang, Persistence and extinction of population in reaction-diffusion-advection model with strong Allee effect growth, J. Math. Biol., 78 (2019), 2093-2140.  doi: 10.1007/s00285-019-01334-7. [50] N. Zhang, F. Chen, Q. Su and T. Wu, Dynamic behaviors of a harvesting Leslie-Gower predator-prey model, Discrete Dyn. Nat. Soc., (2011), 473949. doi: 10.1155/2011/473949. [51] X.-Q. Zhao and P. Zhou, On a Lotka-Volterra competition model: The effects of advection and spatial variation, Calc. Var. Partial Differ. Equ., 55 (2016), 73.  doi: 10.1007/s00526-016-1021-8. [52] J. Zhou, Positive solutions of a diffusive predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes, J. Math. Anal. Appl., 389 (2012), 1380-1393.  doi: 10.1016/j.jmaa.2012.01.013. [53] P. Zhou and D. Xiao, Global dynamics of a classical Lotka-Volterra competition-diffusion-advection system, J. Funct. Anal., 275 (2018), 356-380.  doi: 10.1016/j.jfa.2018.03.006. [54] C. Zhu and K. Lan, Phase portraits, Hopf bifurcations and limit cycles of Leslie-Gower predator-prey systems with harvesting rates, Discrete Contin. Dyn. Syst. Ser. B, 14 (2012), 289-306.  doi: 10.3934/dcdsb.2010.14.289.

Figures(5)