doi: 10.3934/dcdsb.2021261
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Attractors for a class of perturbed nonclassical diffusion equations with memory

1. 

School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha, Changsha Hunan 410114, China

2. 

School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, Changsha Hunan 410114, China

3. 

College of Arts and Sciences, National University of Defense Technology, Changsha Hunan 410073, China

* Corresponding author: Yongqin Xie

Received  June 2021 Revised  September 2021 Early access November 2021

Fund Project: The work was partly supported by NSFS grants 51578080, 11101053, 71471020

In this paper, using a new operator decomposition method (or framework), we establish the existence, regularity and upper semi-continuity of global attractors for a perturbed nonclassical diffusion equation with fading memory. It is worth noting that we get the same conclusion in [7,14] as the perturbed parameters $ \nu = 0 $, but the nonlinearity $ f $ satisfies arbitrary polynomial growth condition rather than critical exponential growth condition.

Citation: Jianbo Yuan, Shixuan Zhang, Yongqin Xie, Jiangwei Zhang. Attractors for a class of perturbed nonclassical diffusion equations with memory. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021261
References:
[1]

E. C. Aifantis, On the problem of diffusion in solids, Acta Mech., 37 (1980), 265-296.  doi: 10.1007/BF01202949.  Google Scholar

[2]

C. T. Anh and T. Q. Bao, Pullback attractors for a class of non-autonomous nonclassical diffusion equations, Nonlinear Anal., 73 (2010), 399-412.  doi: 10.1016/j.na.2010.03.031.  Google Scholar

[3]

C. T. Anh and N. D. Toan, Pullback attractors for nonclassical diffusion equations in noncylindrical domains, Internat. J. Math. & Math. Sci., 2012 (2012), 875913.  doi: 10.1155/2012/875913.  Google Scholar

[4]

C. T. Anh and N. D. Toan, Existence and upper semicontinuity of uniform attractors in $H^1(R^N)$ for nonautonomous nonclassical difusion equations, Ann. Pol. Math., 111 (2014), 271-295.  doi: 10.4064/ap111-3-5.  Google Scholar

[5]

P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19 (1968), 614-627.  doi: 10.1007/BF01594969.  Google Scholar

[6]

D. Colton, Pseudo-parabolic equations in one space variable, J. Differ. Equations, 12 (1972), 559-565.  doi: 10.1016/0022-0396(72)90025-3.  Google Scholar

[7]

M. ContiF. Dell'Oro and V. Pata, Nonclassical diffusion with memory lacking instantaneous damping, Commun. Pur. Appl. Anal., 19 (2020), 2035-2050.  doi: 10.3934/cpaa.2020090.  Google Scholar

[8]

L. C. Evans, Partial Differential Equations, Grad. Stud. Math., vol. 19, AMS, Providence, RI, 1998.  Google Scholar

[9] J. C. Robinson, Infinite-Dimensional Dynamical Dystems, Cambridge University Press, 2001.  doi: 10.1007/978-94-010-0732-0.  Google Scholar
[10]

R. E. Showalter, Sobolev equations for nonlinear dispersive systems, Appl. Anal., 7 (1978), 297-308.  doi: 10.1080/00036817808839200.  Google Scholar

[11]

S. L. Sobolev, On a new problems in mathematical physics, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 18 (1954), 3-50.   Google Scholar

[12]

C. SunD. Dao and J. Duan, Uniform attractors for nonautonomous wave equations with nonlinear damping, SIAM J. Appl. Dyna. Syst., 6 (2008), 293-318.  doi: 10.1137/060663805.  Google Scholar

[13]

C. Sun and M. Yang, Dynamics of the nonclassical diffusion equations, Asympt. Anal., 59 (2008), 51-81.  doi: 10.3233/ASY-2008-0886.  Google Scholar

[14]

N. D. Toan, Uniform attractors of nonclassical diffusion equations lacking instantaneous damping on $\mathbb {R}^{N} $ with memory, Acta Appl. Math., 170 (2020), 789-822.  doi: 10.1007/s10440-020-00359-1.  Google Scholar

[15]

F. Wang, P. Wang and Z. Yao, Approximate controllability of fractioanal paritial differential equation, Adv. Differ. Equ., 2015 (2015), 367, 10 pp. doi: 10.1186/s13662-015-0692-3.  Google Scholar

[16]

L. WangY. Wang and Y. Qin, Upper semicontinuity of attractors for nonclassical diffusion equations in $H^1(\mathbb{R}^3)$, Appl. Math.Comput., 240 (2014), 51-61.  doi: 10.1016/j.amc.2014.04.092.  Google Scholar

[17]

S. WangD. Li and C. Zhong, On the dynamics of a class of nonclassical parabolic equations, J. Math. Anal. Appl., 317 (2006), 565-582.  doi: 10.1016/j.jmaa.2005.06.094.  Google Scholar

[18]

X. WangL. Yang and C. Zhong, Attractors for the nonclassical diffusion equations with fading memory, J. Math. Anal. Appl., 362 (2010), 327-337.  doi: 10.1016/j.jmaa.2009.09.029.  Google Scholar

[19]

Y. WangP. Li and Y. Qin, Upper semicontinuity of uniform attractors for nonclassical diffusion equations, Bound. Value. Probl., 2017 (2017), 84.  doi: 10.1186/s13661-017-0816-7.  Google Scholar

[20]

Y. Wang and Y. Qin, Upper semicontinuity of pullback attractors for nonclassical diffusion equations, J. Math. Phys., 51 (2010), 022701.  doi: 10.1063/1.3277152.  Google Scholar

[21]

Y. L. Xiao, Attractors for a nonclassical diffusion equation, Acta Math. Appl. Sin. English Ser., 18 (2002), 273-276.  doi: 10.1007/s102550200026.  Google Scholar

[22]

Y. XieJ. Li and K. Zhu, Upper semicontinuity of attractors for nonclassical diffusion equations with arbitrary polynomial growth, Adv. Differ. Equ., 2021 (2021), 75.  doi: 10.1186/s13662-020-03146-2.  Google Scholar

[23]

Y. Xie, Y. Li and Y. Zeng, Uniform attractors for nonclassical diffusion equations with memory, J. Func. Spac., 2016 (2016), Art. ID 5340489, 11 pp. doi: 10.1155/2016/5340489.  Google Scholar

[24]

Y. XieQ. Li and K. Zhu, Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity, Nonlinear Anal., 31 (2016), 23-37.  doi: 10.1016/j.nonrwa.2016.01.004.  Google Scholar

[25]

Y. Xie, K. Zhu and C. Sun, The existence of uniform attractors for non-autonomous reaction-diffusion equations on the whole space, J. Math. Phys., 53 (2012), 082703, 11 pp. doi: 10.1063/1.4746693.  Google Scholar

[26]

J. ZhangY. XieQ. Luo and Z. Tang, Asymptotic behavior for the semi-linear reaction diffusion equations with memory, Adv. Differ. Equ., 2019 (2019), 510.  doi: 10.1186/s13662-019-2399-3.  Google Scholar

[27]

K. ZhuY. XieF. Zhou and X. Li, Pullback attractors for the non-autonomous recation-diffusion equations in $\mathbb{R}^n$, J. Math. Phys., 60 (2019), 0032702.  doi: 10.1063/1.5040329.  Google Scholar

show all references

References:
[1]

E. C. Aifantis, On the problem of diffusion in solids, Acta Mech., 37 (1980), 265-296.  doi: 10.1007/BF01202949.  Google Scholar

[2]

C. T. Anh and T. Q. Bao, Pullback attractors for a class of non-autonomous nonclassical diffusion equations, Nonlinear Anal., 73 (2010), 399-412.  doi: 10.1016/j.na.2010.03.031.  Google Scholar

[3]

C. T. Anh and N. D. Toan, Pullback attractors for nonclassical diffusion equations in noncylindrical domains, Internat. J. Math. & Math. Sci., 2012 (2012), 875913.  doi: 10.1155/2012/875913.  Google Scholar

[4]

C. T. Anh and N. D. Toan, Existence and upper semicontinuity of uniform attractors in $H^1(R^N)$ for nonautonomous nonclassical difusion equations, Ann. Pol. Math., 111 (2014), 271-295.  doi: 10.4064/ap111-3-5.  Google Scholar

[5]

P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19 (1968), 614-627.  doi: 10.1007/BF01594969.  Google Scholar

[6]

D. Colton, Pseudo-parabolic equations in one space variable, J. Differ. Equations, 12 (1972), 559-565.  doi: 10.1016/0022-0396(72)90025-3.  Google Scholar

[7]

M. ContiF. Dell'Oro and V. Pata, Nonclassical diffusion with memory lacking instantaneous damping, Commun. Pur. Appl. Anal., 19 (2020), 2035-2050.  doi: 10.3934/cpaa.2020090.  Google Scholar

[8]

L. C. Evans, Partial Differential Equations, Grad. Stud. Math., vol. 19, AMS, Providence, RI, 1998.  Google Scholar

[9] J. C. Robinson, Infinite-Dimensional Dynamical Dystems, Cambridge University Press, 2001.  doi: 10.1007/978-94-010-0732-0.  Google Scholar
[10]

R. E. Showalter, Sobolev equations for nonlinear dispersive systems, Appl. Anal., 7 (1978), 297-308.  doi: 10.1080/00036817808839200.  Google Scholar

[11]

S. L. Sobolev, On a new problems in mathematical physics, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 18 (1954), 3-50.   Google Scholar

[12]

C. SunD. Dao and J. Duan, Uniform attractors for nonautonomous wave equations with nonlinear damping, SIAM J. Appl. Dyna. Syst., 6 (2008), 293-318.  doi: 10.1137/060663805.  Google Scholar

[13]

C. Sun and M. Yang, Dynamics of the nonclassical diffusion equations, Asympt. Anal., 59 (2008), 51-81.  doi: 10.3233/ASY-2008-0886.  Google Scholar

[14]

N. D. Toan, Uniform attractors of nonclassical diffusion equations lacking instantaneous damping on $\mathbb {R}^{N} $ with memory, Acta Appl. Math., 170 (2020), 789-822.  doi: 10.1007/s10440-020-00359-1.  Google Scholar

[15]

F. Wang, P. Wang and Z. Yao, Approximate controllability of fractioanal paritial differential equation, Adv. Differ. Equ., 2015 (2015), 367, 10 pp. doi: 10.1186/s13662-015-0692-3.  Google Scholar

[16]

L. WangY. Wang and Y. Qin, Upper semicontinuity of attractors for nonclassical diffusion equations in $H^1(\mathbb{R}^3)$, Appl. Math.Comput., 240 (2014), 51-61.  doi: 10.1016/j.amc.2014.04.092.  Google Scholar

[17]

S. WangD. Li and C. Zhong, On the dynamics of a class of nonclassical parabolic equations, J. Math. Anal. Appl., 317 (2006), 565-582.  doi: 10.1016/j.jmaa.2005.06.094.  Google Scholar

[18]

X. WangL. Yang and C. Zhong, Attractors for the nonclassical diffusion equations with fading memory, J. Math. Anal. Appl., 362 (2010), 327-337.  doi: 10.1016/j.jmaa.2009.09.029.  Google Scholar

[19]

Y. WangP. Li and Y. Qin, Upper semicontinuity of uniform attractors for nonclassical diffusion equations, Bound. Value. Probl., 2017 (2017), 84.  doi: 10.1186/s13661-017-0816-7.  Google Scholar

[20]

Y. Wang and Y. Qin, Upper semicontinuity of pullback attractors for nonclassical diffusion equations, J. Math. Phys., 51 (2010), 022701.  doi: 10.1063/1.3277152.  Google Scholar

[21]

Y. L. Xiao, Attractors for a nonclassical diffusion equation, Acta Math. Appl. Sin. English Ser., 18 (2002), 273-276.  doi: 10.1007/s102550200026.  Google Scholar

[22]

Y. XieJ. Li and K. Zhu, Upper semicontinuity of attractors for nonclassical diffusion equations with arbitrary polynomial growth, Adv. Differ. Equ., 2021 (2021), 75.  doi: 10.1186/s13662-020-03146-2.  Google Scholar

[23]

Y. Xie, Y. Li and Y. Zeng, Uniform attractors for nonclassical diffusion equations with memory, J. Func. Spac., 2016 (2016), Art. ID 5340489, 11 pp. doi: 10.1155/2016/5340489.  Google Scholar

[24]

Y. XieQ. Li and K. Zhu, Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity, Nonlinear Anal., 31 (2016), 23-37.  doi: 10.1016/j.nonrwa.2016.01.004.  Google Scholar

[25]

Y. Xie, K. Zhu and C. Sun, The existence of uniform attractors for non-autonomous reaction-diffusion equations on the whole space, J. Math. Phys., 53 (2012), 082703, 11 pp. doi: 10.1063/1.4746693.  Google Scholar

[26]

J. ZhangY. XieQ. Luo and Z. Tang, Asymptotic behavior for the semi-linear reaction diffusion equations with memory, Adv. Differ. Equ., 2019 (2019), 510.  doi: 10.1186/s13662-019-2399-3.  Google Scholar

[27]

K. ZhuY. XieF. Zhou and X. Li, Pullback attractors for the non-autonomous recation-diffusion equations in $\mathbb{R}^n$, J. Math. Phys., 60 (2019), 0032702.  doi: 10.1063/1.5040329.  Google Scholar

[1]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[2]

Pengyu Chen, Xuping Zhang. Upper semi-continuity of attractors for non-autonomous fractional stochastic parabolic equations with delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4325-4357. doi: 10.3934/dcdsb.2020290

[3]

María Astudillo, Marcelo M. Cavalcanti. On the upper semicontinuity of the global attractor for a porous medium type problem with large diffusion. Evolution Equations & Control Theory, 2017, 6 (1) : 1-13. doi: 10.3934/eect.2017001

[4]

Delin Wu and Chengkui Zhong. Estimates on the dimension of an attractor for a nonclassical hyperbolic equation. Electronic Research Announcements, 2006, 12: 63-70.

[5]

Messoud Efendiev, Etsushi Nakaguchi, Wolfgang L. Wendland. Uniform estimate of dimension of the global attractor for a semi-discretized chemotaxis-growth system. Conference Publications, 2007, 2007 (Special) : 334-343. doi: 10.3934/proc.2007.2007.334

[6]

Luis Silvestre. Hölder continuity for integro-differential parabolic equations with polynomial growth respect to the gradient. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 1069-1081. doi: 10.3934/dcds.2010.28.1069

[7]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term. Discrete & Continuous Dynamical Systems, 2014, 34 (10) : 4155-4182. doi: 10.3934/dcds.2014.34.4155

[8]

Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717

[9]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5321-5335. doi: 10.3934/dcdsb.2020345

[10]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6207-6228. doi: 10.3934/dcdsb.2021015

[11]

Nguyen Huy Tuan, Donal O'Regan, Tran Bao Ngoc. Continuity with respect to fractional order of the time fractional diffusion-wave equation. Evolution Equations & Control Theory, 2020, 9 (3) : 773-793. doi: 10.3934/eect.2020033

[12]

Raphaël Côte, Frédéric Valet. Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1039-1058. doi: 10.3934/cpaa.2021005

[13]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao. Polynomial upper bounds for the instability of the nonlinear Schrödinger equation below the energy norm. Communications on Pure & Applied Analysis, 2003, 2 (1) : 33-50. doi: 10.3934/cpaa.2003.2.33

[14]

Monica Conti, Filippo Dell'Oro, Vittorino Pata. Nonclassical diffusion with memory lacking instantaneous damping. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2035-2050. doi: 10.3934/cpaa.2020090

[15]

Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations & Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241

[16]

Jaume Llibre, Claudia Valls. Centers for polynomial vector fields of arbitrary degree. Communications on Pure & Applied Analysis, 2009, 8 (2) : 725-742. doi: 10.3934/cpaa.2009.8.725

[17]

Youshan Tao, Michael Winkler. Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1901-1914. doi: 10.3934/dcds.2012.32.1901

[18]

Arnaud Debussche, Sylvain De Moor, Julien Vovelle. Diffusion limit for the radiative transfer equation perturbed by a Wiener process. Kinetic & Related Models, 2015, 8 (3) : 467-492. doi: 10.3934/krm.2015.8.467

[19]

Milena Stanislavova. On the global attractor for the damped Benjamin-Bona-Mahony equation. Conference Publications, 2005, 2005 (Special) : 824-832. doi: 10.3934/proc.2005.2005.824

[20]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

2020 Impact Factor: 1.327

Article outline

[Back to Top]