• Previous Article
    The existence of time-dependent attractor for wave equation with fractional damping and lower regular forcing term
  • DCDS-B Home
  • This Issue
  • Next Article
    The multi-dimensional stochastic Stefan financial model for a portfolio of assets
doi: 10.3934/dcdsb.2021264
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Bifurcation of the critical crossing cycle in a planar piecewise smooth system with two zones

1. 

School of Mathematics, Hunan University, Changsha, Hunan 410082, China

2. 

College of Mathematics and Computer Science, Changsha University, Changsha, Hunan 410022, China

3. 

School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, Hunan 410114, China

* Corresponding author: Lihong Huang

Received  December 2020 Revised  July 2021 Early access November 2021

In this paper, we consider the nonsmooth bifurcation around a class of critical crossing cycles, which are codimension-2 closed orbits composed of tangency singularities and regular orbits, for a two-parameter family of planar piecewise smooth system with two zones. By the construction of suitable displacement function (equivalently, Poincar$ {\rm\acute{e}} $ map), the stability and the existence of periodic solutions under the variation of the parameters inside this system are characterized. More precisely, we obtain some parameter regions on the existence of crossing cycles and sliding cycles near those loops. As applications, several examples are given to illustrate our main conclusions.

Citation: Fang Wu, Lihong Huang, Jiafu Wang. Bifurcation of the critical crossing cycle in a planar piecewise smooth system with two zones. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021264
References:
[1]

K. D. S. Andrade, O. M. L. Gomide and D. D. Novaes, Qualitative analysis of polycycles in Filippov systems, Preprint, arXiv: 1905.11950, 2019. Google Scholar

[2]

M. D. BernardoK. H. Johansson and F. Vasca, Self-oscillations and sliding in relay feedback systems: Symmetry and bifurcations, International Journal of Bifurcation and Chaos, 11 (2001), 1121-1140.  doi: 10.1142/S0218127401002584.  Google Scholar

[3]

S. Chen and Z. Du, Stability and perturbations of homoclinic loops in a class of piecewise smooth systems, Internat. J. Bifur. Chaos Appl. Sci., 25 (2015), 1550114, 16 pp. doi: 10.1142/S021812741550114X.  Google Scholar

[4]

S. CoombesR. Thul and K. C. A. Wedgwood, Nonsmooth dynamics in spiking neuron models, Phys. D, 241 (2012), 2042-2057.  doi: 10.1016/j.physd.2011.05.012.  Google Scholar

[5]

F. DercoleA. Gragnani and S. Rinaldi, Bifurcation analysis of piecewise smooth ecological models, Theoretical Population Biology, 72 (2007), 197-213.  doi: 10.1016/j.tpb.2007.06.003.  Google Scholar

[6]

M. Di BernardoC. J. BuddA. R. ChampneysP. KowalczykA. B. NordmarkG. O. Tost and P. T. Piiroinen, Bifurcations in nonsmooth dynamical systems, SIAM Rev., 50 (2008), 629-701.  doi: 10.1137/050625060.  Google Scholar

[7]

M. Di BernardoM. I. FeiginS. J. Hogan and M. E. Homer, Local analysis of C-bifurcations in n-dimensional piecewise-smooth dynamical systems, Chaos Solitons Fractals, 10 (1999), 1881-1908.  doi: 10.1016/S0960-0779(98)00317-8.  Google Scholar

[8]

Z. DuY. Li and W. Zhang, Bifurcation of periodic orbits in a class of planar Filippov systems, Nonlinear Anal., 69 (2008), 3610-3628.  doi: 10.1016/j.na.2007.09.045.  Google Scholar

[9]

R. D. Euzbio and J. Llibre, On the number of limit cycles in discontinuous piecewise linear differential systems with two pieces separated by a straight line, J. Math. Anal. Appl., 424 (2015), 475-486.  doi: 10.1016/j.jmaa.2014.10.077.  Google Scholar

[10]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides: Control Systems, Mathematics and its Applications (Soviet Series), 18. Kluwer Academic Publishers Group, Dordrecht, 1988. doi: 10.1007/978-94-015-7793-9.  Google Scholar

[11]

E. FreireE. Ponce and F. Torres, Canonical discontinuous planar piecewise linear systems, SIAM J. Appl. Dyn. Syst., 11 (2012), 181-211.  doi: 10.1137/11083928X.  Google Scholar

[12]

E. FreireE. Ponce and F. Torres, On the critical crossing cycle bifurcation in planar Filippov systems, J. Differential Equations, 259 (2015), 7086-7107.  doi: 10.1016/j.jde.2015.08.013.  Google Scholar

[13]

U. GalvanettoS. R. Bishop and L. Briseghella, Mechanical stick-slip vibrations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 637-651.  doi: 10.1142/S0218127495000508.  Google Scholar

[14]

M. GuardiaT. M. Seara and M. A. Teixeira, Generic bifurcations of low codimension of planar Filippov Systems, J. Differential Equations, 250 (2011), 1967-2023.  doi: 10.1016/j.jde.2010.11.016.  Google Scholar

[15]

S. M. Huan and X. S. Yang, Existence of limit cycles in general planar piecewise linear systems of saddle-saddle dynamics, Nonlinear Anal., 92 (2013), 82-95.  doi: 10.1016/j.na.2013.06.017.  Google Scholar

[16]

M. Kunze, Non-Smooth Dynamical Systems, Lecture Notes in Mathematics, 1744. Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0103843.  Google Scholar

[17]

Y. A. KuznetsovS. Rinaldi and A. Gragnani, One-parameter bifurcations in planar filippov systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 2157-2188.  doi: 10.1142/S0218127403007874.  Google Scholar

[18]

S. Lang, Introduction to Differentiable Manifolds, 2$^nd$ edition, Universitext. Springer-Verlag, New York, 2002.  Google Scholar

[19]

T. Li and X. Chen, Degenerate grazing-sliding bifurcations in planar Filippov systems, J. Differential Equations, 269 (2020), 11396-11434.  doi: 10.1016/j.jde.2020.08.037.  Google Scholar

[20]

F. Liang and M. Han, The stability of some kinds of generalized homoclinic loops in planar piecewise smooth systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350027, 15pp. doi: 10.1142/S0218127413500272.  Google Scholar

[21]

F. LiangM. Han and X. Zhang, Bifurcation of limit cycles from generalized homoclinic loops in planar piecewise smooth systems, J. Differential Equations, 255 (2013), 4403-4436.  doi: 10.1016/j.jde.2013.08.013.  Google Scholar

[22]

J. Llibre, M. A. Teixeira and J. Torregrosa, Lower bounds for the maximum number of limit cycles of discontinuous piecewise linear differential systems with a straight line of separation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350066, 10pp. doi: 10.1142/S0218127413500661.  Google Scholar

[23]

D. D. NovaesM. A. Teixeira and I. O. Zeli, The generic unfolding of a codimension-two connection to a two-fold singularity of planar Filippov systems, Nonlinearity, 31 (2018), 2083-2104.  doi: 10.1088/1361-6544/aaaaf7.  Google Scholar

[24]

J. WangX. Chen and L. Huang, The number and stability of limit cycles for planar piecewise linear systems of node-saddle type, J. Math. Anal. Appl., 469 (2019), 405-427.  doi: 10.1016/j.jmaa.2018.09.024.  Google Scholar

[25]

J. WangC. Huang and L. Huang, Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type, Nonlinear Anal. Hybrid Syst., 33 (2019), 162-178.  doi: 10.1016/j.nahs.2019.03.004.  Google Scholar

[26]

Y. Xiong and M. Han, Limit cycle bifurcations near homoclinic and heteroclinic loops via stability-changing of a homoclinic loop, Chaos Solitons Fractals, 78 (2015), 107-117.  doi: 10.1016/j.chaos.2015.07.015.  Google Scholar

show all references

References:
[1]

K. D. S. Andrade, O. M. L. Gomide and D. D. Novaes, Qualitative analysis of polycycles in Filippov systems, Preprint, arXiv: 1905.11950, 2019. Google Scholar

[2]

M. D. BernardoK. H. Johansson and F. Vasca, Self-oscillations and sliding in relay feedback systems: Symmetry and bifurcations, International Journal of Bifurcation and Chaos, 11 (2001), 1121-1140.  doi: 10.1142/S0218127401002584.  Google Scholar

[3]

S. Chen and Z. Du, Stability and perturbations of homoclinic loops in a class of piecewise smooth systems, Internat. J. Bifur. Chaos Appl. Sci., 25 (2015), 1550114, 16 pp. doi: 10.1142/S021812741550114X.  Google Scholar

[4]

S. CoombesR. Thul and K. C. A. Wedgwood, Nonsmooth dynamics in spiking neuron models, Phys. D, 241 (2012), 2042-2057.  doi: 10.1016/j.physd.2011.05.012.  Google Scholar

[5]

F. DercoleA. Gragnani and S. Rinaldi, Bifurcation analysis of piecewise smooth ecological models, Theoretical Population Biology, 72 (2007), 197-213.  doi: 10.1016/j.tpb.2007.06.003.  Google Scholar

[6]

M. Di BernardoC. J. BuddA. R. ChampneysP. KowalczykA. B. NordmarkG. O. Tost and P. T. Piiroinen, Bifurcations in nonsmooth dynamical systems, SIAM Rev., 50 (2008), 629-701.  doi: 10.1137/050625060.  Google Scholar

[7]

M. Di BernardoM. I. FeiginS. J. Hogan and M. E. Homer, Local analysis of C-bifurcations in n-dimensional piecewise-smooth dynamical systems, Chaos Solitons Fractals, 10 (1999), 1881-1908.  doi: 10.1016/S0960-0779(98)00317-8.  Google Scholar

[8]

Z. DuY. Li and W. Zhang, Bifurcation of periodic orbits in a class of planar Filippov systems, Nonlinear Anal., 69 (2008), 3610-3628.  doi: 10.1016/j.na.2007.09.045.  Google Scholar

[9]

R. D. Euzbio and J. Llibre, On the number of limit cycles in discontinuous piecewise linear differential systems with two pieces separated by a straight line, J. Math. Anal. Appl., 424 (2015), 475-486.  doi: 10.1016/j.jmaa.2014.10.077.  Google Scholar

[10]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides: Control Systems, Mathematics and its Applications (Soviet Series), 18. Kluwer Academic Publishers Group, Dordrecht, 1988. doi: 10.1007/978-94-015-7793-9.  Google Scholar

[11]

E. FreireE. Ponce and F. Torres, Canonical discontinuous planar piecewise linear systems, SIAM J. Appl. Dyn. Syst., 11 (2012), 181-211.  doi: 10.1137/11083928X.  Google Scholar

[12]

E. FreireE. Ponce and F. Torres, On the critical crossing cycle bifurcation in planar Filippov systems, J. Differential Equations, 259 (2015), 7086-7107.  doi: 10.1016/j.jde.2015.08.013.  Google Scholar

[13]

U. GalvanettoS. R. Bishop and L. Briseghella, Mechanical stick-slip vibrations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 637-651.  doi: 10.1142/S0218127495000508.  Google Scholar

[14]

M. GuardiaT. M. Seara and M. A. Teixeira, Generic bifurcations of low codimension of planar Filippov Systems, J. Differential Equations, 250 (2011), 1967-2023.  doi: 10.1016/j.jde.2010.11.016.  Google Scholar

[15]

S. M. Huan and X. S. Yang, Existence of limit cycles in general planar piecewise linear systems of saddle-saddle dynamics, Nonlinear Anal., 92 (2013), 82-95.  doi: 10.1016/j.na.2013.06.017.  Google Scholar

[16]

M. Kunze, Non-Smooth Dynamical Systems, Lecture Notes in Mathematics, 1744. Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0103843.  Google Scholar

[17]

Y. A. KuznetsovS. Rinaldi and A. Gragnani, One-parameter bifurcations in planar filippov systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 2157-2188.  doi: 10.1142/S0218127403007874.  Google Scholar

[18]

S. Lang, Introduction to Differentiable Manifolds, 2$^nd$ edition, Universitext. Springer-Verlag, New York, 2002.  Google Scholar

[19]

T. Li and X. Chen, Degenerate grazing-sliding bifurcations in planar Filippov systems, J. Differential Equations, 269 (2020), 11396-11434.  doi: 10.1016/j.jde.2020.08.037.  Google Scholar

[20]

F. Liang and M. Han, The stability of some kinds of generalized homoclinic loops in planar piecewise smooth systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350027, 15pp. doi: 10.1142/S0218127413500272.  Google Scholar

[21]

F. LiangM. Han and X. Zhang, Bifurcation of limit cycles from generalized homoclinic loops in planar piecewise smooth systems, J. Differential Equations, 255 (2013), 4403-4436.  doi: 10.1016/j.jde.2013.08.013.  Google Scholar

[22]

J. Llibre, M. A. Teixeira and J. Torregrosa, Lower bounds for the maximum number of limit cycles of discontinuous piecewise linear differential systems with a straight line of separation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350066, 10pp. doi: 10.1142/S0218127413500661.  Google Scholar

[23]

D. D. NovaesM. A. Teixeira and I. O. Zeli, The generic unfolding of a codimension-two connection to a two-fold singularity of planar Filippov systems, Nonlinearity, 31 (2018), 2083-2104.  doi: 10.1088/1361-6544/aaaaf7.  Google Scholar

[24]

J. WangX. Chen and L. Huang, The number and stability of limit cycles for planar piecewise linear systems of node-saddle type, J. Math. Anal. Appl., 469 (2019), 405-427.  doi: 10.1016/j.jmaa.2018.09.024.  Google Scholar

[25]

J. WangC. Huang and L. Huang, Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type, Nonlinear Anal. Hybrid Syst., 33 (2019), 162-178.  doi: 10.1016/j.nahs.2019.03.004.  Google Scholar

[26]

Y. Xiong and M. Han, Limit cycle bifurcations near homoclinic and heteroclinic loops via stability-changing of a homoclinic loop, Chaos Solitons Fractals, 78 (2015), 107-117.  doi: 10.1016/j.chaos.2015.07.015.  Google Scholar

Figure 1.  Two possible situations of counterclockwise periodic orbit depending on the stability of two foci. (a) unstable-stable; (b) unstable-unstable
Figure 2.  The critical crossing cycles. (a) Type A; (b) Type B
Figure 3.  The half-return map $ P^+_{i}(\xi;\alpha), i = A,B $, of the system $ (4) $. The dashed lines correspond to the case $ \alpha = 0 $
Figure 4.  The half-return map $ P^-_{i}(\xi;\beta) $, $ i = A,B $, of the system $ (4) $. The dashed lines correspond to the case $ \beta = 0 $
Figure 5.  On the switching line $ \Sigma $, the full lines denote the sliding or escaping regions and the dashed lines denote the crossing regions
Figure 7">Figure 6.  Space of parameters $ (\beta, \alpha) $ and bifurcation curves. The topological structures of trajectories in regions $ A_{ij},\; i = 0,1,j = 0,...,9, $ are illustrated in Figure 7
Figure 6. The purple and red closed curves denote the stable and (outer) unstable (critical) crossing cycles, respectively. The sliding cycle are marked by blue and the separatrix connections are marked by green. The black closed orbit in $ A_{02} $ is a semi-stable crossing cycle">Figure 7.  (colour online) The topological structures of trajectories in Figure 6. The purple and red closed curves denote the stable and (outer) unstable (critical) crossing cycles, respectively. The sliding cycle are marked by blue and the separatrix connections are marked by green. The black closed orbit in $ A_{02} $ is a semi-stable crossing cycle
Figure 9">Figure 8.  Space of parameters $ (\beta, \alpha) $ and bifurcation curves. The topological structures of trajectories in regions $ B_{ij},\; i = 0,1,j = 0,...,9, $ are illustrated in Figure 9
Figure 8. The purple and red closed curves denote the stable and (outer) unstable (critical) crossing cycles, respectively. The sliding cycle are marked by blue and the separatrix connections are marked by green. The black closed orbit in $ B_{08} $ is a semi-stable crossing cycle">Figure 9.  (colour online) The topological structures of trajectories in Figure 8. The purple and red closed curves denote the stable and (outer) unstable (critical) crossing cycles, respectively. The sliding cycle are marked by blue and the separatrix connections are marked by green. The black closed orbit in $ B_{08} $ is a semi-stable crossing cycle
Figure 11">Figure 10.  Space of parameters $ (\beta, \alpha) $ and bifurcation curves for $ m_0<0 $. The topological structures of trajectories in regions $ C_{ij},\; i = 0,1,j = 0,...,9, $ are illustrated in Figure 11
Figure 8. The red closed curves denote the (outer) stable (critical) crossing cycles. The sliding cycle are marked by blue and the separatrix connections are marked by green">Figure 11.  (colour online) The topological structures of trajectories in Figure 8. The red closed curves denote the (outer) stable (critical) crossing cycles. The sliding cycle are marked by blue and the separatrix connections are marked by green
Figure 12.  A critical crossing cycle of Type A in System $ (42) $ when $ (\alpha,\beta) = (0,0) $
Figure 13.  (a) no cycles at $ (\alpha,\beta) = (0.01,0.01)\in A_{01} $; (b) a semi-stable crossing cycle at $ (\alpha,\beta) = (0.0094,0.01)\in A_{02} $; (c) two crossing cycles: one unstable and one stable, at $ (\alpha,\beta) = (0.007,0.01)\in A_{03} $; (d) a crossing cycle and a critical crossing cycle at $ (\alpha,\beta) = (0.0053,0.01)\in A_{04} $; (e) a crossing cycle and a sliding cycle $ (\alpha,\beta) = (0.005,0.01)\in A_{05} $; (f) a crossing cycle and a homoclinic sliding cycle connecting the pseudo-saddle $ p_e\approx(0.00487,0) $ to itself at $ (\alpha,\beta) = (0.0047,0.01)\in A_{06} $; (g) a crossing cycle at $ (\alpha,\beta) = (0.0043,0.01)\in A_{07} $; (h) a crossing cycle and a heteroclinic connection at $ (\alpha,\beta) = (0.004,0.01)\in A_{08} $; (i) a crossing cycle at $ (\alpha,\beta) = (0,0.01)\in A_{09} $
Figure 14.  (a) no cycles at $ (\alpha,\beta) = (0,-0.01)\in A_{13} $; (b) a heteroclinic connection to two visible fold $ (0,0) $ and $ (-0.01,0) $ at $ (\alpha,\beta) = (-0.00581,-0.01)\in A_{14} $; (c) a sliding heteroclonic connection at $ (\alpha,\beta) = (-0.00607,-0.01)\in A_{15} $; (d) a sliding homoclinic cycle connecting the pseudo-saddle $ p_s\approx(-0.0053,0) $ to itself at $ (\alpha,\beta) = (-0.00714,-0.01)\in A_{16} $; (e) a sliding cycle at $ (\alpha,\beta) = (-0.00716,-0.01)\in A_{17} $; (f) a critical crossing cycle at $ (\alpha,\beta) = (-0.0073,-0.01)\in A_{18} $; (g) a crossing cycle at $ (\alpha,\beta) = (-0.008,-0.01)\in A_{19} $
Figure 15.  A critical crossing cycle of Type B in System $ (44) $ when $ (\alpha,\beta) = (0,0) $
Figure 16.  A sliding critical cycle bifurcation and a crossing-sliding bifurcation. (a) a sliding cycle with two segments at $ (\alpha,\beta) = (0.045,-0.1)\in C_{01} $; (b) a sliding cycle with one segment at $ (\alpha,\beta) = (0.03,-0.1)\in C_{02} $; (c) a sliding cycle with one segment at $ (\alpha,\beta) = (-0.0035,-0.1)\in C_{03} $; (d) a critical crossing cycle at $ (\alpha,\beta) = (-0.0136,-0.1)\in C_{04} $; (e) a crossing cycle at $ (\alpha,\beta) = (-0.0141,-0.1)\in C_{05} $
Figure 17.  A crossing-sliding bifurcation and a sliding heteroclinic bifurcation. (a) a sliding cycle at $ (\alpha,\beta) = (0,0.1)\in C_{13} $; (b) a critical crossing cycle at $ (\alpha,\beta) = (-0.015,0.1)\in C_{12} $; (c) a crossing cycle at $ (\alpha,\beta) = (-0.025,0.1)\in C_{11} $; (d) a crossing cycle at $ (\alpha,\beta) = (-0.03,0.1)\in C_{10} $; (e) a crossing cycle at $ (\alpha,\beta) = (-0.036,0.1)\in C_{09} $
[1]

Dingheng Pi. Limit cycles for regularized piecewise smooth systems with a switching manifold of codimension two. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 881-905. doi: 10.3934/dcdsb.2018211

[2]

Hun Ki Baek, Younghae Do. Dangerous Border-Collision bifurcations of a piecewise-smooth map. Communications on Pure & Applied Analysis, 2006, 5 (3) : 493-503. doi: 10.3934/cpaa.2006.5.493

[3]

Dingheng Pi. Periodic orbits for double regularization of piecewise smooth systems with a switching manifold of codimension two. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021080

[4]

Shanshan Liu, Maoan Han. Bifurcation of limit cycles in a family of piecewise smooth systems via averaging theory. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3115-3124. doi: 10.3934/dcdss.2020133

[5]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[6]

Yurong Li, Zhengdong Du. Applying battelli-fečkan's method to transversal heteroclinic bifurcation in piecewise smooth systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6025-6052. doi: 10.3934/dcdsb.2019119

[7]

Yilei Tang. Global dynamics and bifurcation of planar piecewise smooth quadratic quasi-homogeneous differential systems. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 2029-2046. doi: 10.3934/dcds.2018082

[8]

Luca Dieci, Cinzia Elia. Piecewise smooth systems near a co-dimension 2 discontinuity manifold: Can one say what should happen?. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1039-1068. doi: 10.3934/dcdss.2016041

[9]

Atanas Stefanov. On the Lipschitzness of the solution map for the 2 D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1471-1490. doi: 10.3934/dcds.2010.26.1471

[10]

Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021089

[11]

Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114

[12]

Lingbing He. On the global smooth solution to 2-D fluid/particle system. Discrete & Continuous Dynamical Systems, 2010, 27 (1) : 237-263. doi: 10.3934/dcds.2010.27.237

[13]

Christian Wolf. A shift map with a discontinuous entropy function. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012

[14]

Yipeng Chen, Yicheng Liu, Xiao Wang. Exponential stability for a multi-particle system with piecewise interaction function and stochastic disturbance. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021023

[15]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[16]

Zeng Zhang, Zhaoyang Yin. Global existence for a two-component Camassa-Holm system with an arbitrary smooth function. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5523-5536. doi: 10.3934/dcds.2018243

[17]

Viviane Baladi, Daniel Smania. Smooth deformations of piecewise expanding unimodal maps. Discrete & Continuous Dynamical Systems, 2009, 23 (3) : 685-703. doi: 10.3934/dcds.2009.23.685

[18]

Elmehdi Amhraoui, Tawfik Masrour. Smoothing approximations for piecewise smooth functions: A probabilistic approach. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021033

[19]

Wacław Marzantowicz, Justyna Signerska. Firing map of an almost periodic input function. Conference Publications, 2011, 2011 (Special) : 1032-1041. doi: 10.3934/proc.2011.2011.1032

[20]

Michal Málek, Peter Raith. Stability of the distribution function for piecewise monotonic maps on the interval. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2527-2539. doi: 10.3934/dcds.2018105

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (50)
  • HTML views (43)
  • Cited by (0)

Other articles
by authors

[Back to Top]