September  2022, 27(9): 5085-5100. doi: 10.3934/dcdsb.2021265

The minimal wave speed of the Lotka-Volterra competition model with seasonal succession

Department of Mathematics, School of Science, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China

* Corresponding authors

Received  February 2021 Revised  July 2021 Published  September 2022 Early access  November 2021

Fund Project: The work of M. Ma was supported by National Natural Science Foundation of China (No. 12071434, No. 12011530398)

This paper focuses on the minimal wave speed of time-periodic traveling waves to a Lotka-Volterra competition model with seasonal succession. It is the first time the general conditions of linear selection and nonlinear selection have been derived by the comparison principle and the upper-lower solution method. Based on the decay characteristics of traveling waves, we obtain some explicit conditions for determining the selection mechanism of the minimal wave speed by constructing upper/lower solutions, which include the first explicit condition for the nonlinear selection and the explicit conditions for the linear selection that greatly improve the result in the reference.

Citation: Wentao Meng, Yuanxi Yue, Manjun Ma. The minimal wave speed of the Lotka-Volterra competition model with seasonal succession. Discrete and Continuous Dynamical Systems - B, 2022, 27 (9) : 5085-5100. doi: 10.3934/dcdsb.2021265
References:
[1]

N. AbrantesS. C. Antunes and M. J. Pereira, Seasonal succession of cladocerans and phytoplankton and their interactions in a shallow eutrophic lake (Lake Vela, Portugal), Acta Oecologica, 29 (2006), 54-64.  doi: 10.1016/j.actao.2005.07.006.

[2]

J. GamierG. Billen and M. Coste, Seasonal succession of diatoms and Chlorophyceae in the drainage network of the Seine River: Observation and modeling, Limnology and Oceanography, 40 (1995), 750-765.  doi: 10.4319/lo.1995.40.4.0750.

[3]

S.-B. Hsu and X.-Q. Zhao, A Lotka-Volterra competition model with seasonal succession, J. Math. Biol., 64 (2012), 109-130.  doi: 10.1007/s00285-011-0408-6.

[4]

J. Li and A. Zhao, Stability analysis of a non-autonomous Lotka-Volterra competition model with seasonal succession, Appl. Math. Model., 40 (2016), 763-781.  doi: 10.1016/j.apm.2015.10.035.

[5]

M. MaZ. Huang and C. Ou, Speed of the traveling wave for the bistable Lotka-Volterra competition mode, Nonlinearity, 32 (2019), 3143-3162.  doi: 10.1088/1361-6544/ab231c.

[6]

M. Ma and X.-Q. Zhao, Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 591-606.  doi: 10.3934/dcdsb.2016.21.591.

[7]

H. MüllerA. Schöne and R. M. Pinto-Coelho, Seasonal succession of ciliates in lake constance, Microbial Ecology, 21 (1991), 119-138. 

[8]

R. Peng and X.-Q. Zhao, The diffusive logistic model with a free boundary and seasonal succession, Discrete Contin. Dyn. Syst., 33 (2013), 2007-2031.  doi: 10.3934/dcds.2013.33.2007.

[9]

J. Pinhassi and Å. Hagström, Seasonal succession in marine bacterioplankton, Aquatic Microbial Ecology, 21 (2000), 245-256.  doi: 10.3354/ame021245.

[10]

D. E. Raitsos, Y. Pradhan and R. J. W. Brewin, et al, Remote sensing the phytoplankton seasonal succession of the red sea, PLoS ONE, 8 (2013). doi: 10.1371/journal.pone.0064909.

[11]

S. K. SchmidtE. K. Costello and D. R. Nemergut, Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil, Ecology, 88 (2007), 1379-1385.  doi: 10.1890/06-0164.

[12]

U. SommerZ. M. Gliwicz and W. I. Lampert, The PEG-model of seasonal succession of planktonic events in fresh waters, Archiv für Hydrobiologie, 106 (1986), 433-471. 

[13]

H. Y. WangH. L. Wang and C. H. Ou, Spreading dynamics of a Lotka-Volterra competition model in periodic habitats, J. Differential Equations, 270 (2021), 664-693.  doi: 10.1016/j.jde.2020.08.016.

[14]

Y. X. Yue, Y. Z. Han, J. C. Tao and M. Ma, The minimal wave speed to the Lotka-Volterra competition model, J. Math. Anal. Appl., 488 (2020), 124106, 11pp. doi: 10.1016/j.jmaa.2020.124106.

[15]

Y. Zhang and X.-Q. Zhao, Bistable travelling waves for a reaction and diffusion model with seasonal succession*, Nonlinearity, 26 (2013), 691-709.  doi: 10.1088/0951-7715/26/3/691.

[16]

G. Zhao and S. Ruan, Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion, J. Math. Pures Appl., 95 (2011), 627-671.  doi: 10.1016/j.matpur.2010.11.005.

[17]

X.-Q. Zhao, Dynamical Systems in Population Biology, 2$^{nd}$ edition, Springer Nature, Switzerland, 2017.

show all references

References:
[1]

N. AbrantesS. C. Antunes and M. J. Pereira, Seasonal succession of cladocerans and phytoplankton and their interactions in a shallow eutrophic lake (Lake Vela, Portugal), Acta Oecologica, 29 (2006), 54-64.  doi: 10.1016/j.actao.2005.07.006.

[2]

J. GamierG. Billen and M. Coste, Seasonal succession of diatoms and Chlorophyceae in the drainage network of the Seine River: Observation and modeling, Limnology and Oceanography, 40 (1995), 750-765.  doi: 10.4319/lo.1995.40.4.0750.

[3]

S.-B. Hsu and X.-Q. Zhao, A Lotka-Volterra competition model with seasonal succession, J. Math. Biol., 64 (2012), 109-130.  doi: 10.1007/s00285-011-0408-6.

[4]

J. Li and A. Zhao, Stability analysis of a non-autonomous Lotka-Volterra competition model with seasonal succession, Appl. Math. Model., 40 (2016), 763-781.  doi: 10.1016/j.apm.2015.10.035.

[5]

M. MaZ. Huang and C. Ou, Speed of the traveling wave for the bistable Lotka-Volterra competition mode, Nonlinearity, 32 (2019), 3143-3162.  doi: 10.1088/1361-6544/ab231c.

[6]

M. Ma and X.-Q. Zhao, Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 591-606.  doi: 10.3934/dcdsb.2016.21.591.

[7]

H. MüllerA. Schöne and R. M. Pinto-Coelho, Seasonal succession of ciliates in lake constance, Microbial Ecology, 21 (1991), 119-138. 

[8]

R. Peng and X.-Q. Zhao, The diffusive logistic model with a free boundary and seasonal succession, Discrete Contin. Dyn. Syst., 33 (2013), 2007-2031.  doi: 10.3934/dcds.2013.33.2007.

[9]

J. Pinhassi and Å. Hagström, Seasonal succession in marine bacterioplankton, Aquatic Microbial Ecology, 21 (2000), 245-256.  doi: 10.3354/ame021245.

[10]

D. E. Raitsos, Y. Pradhan and R. J. W. Brewin, et al, Remote sensing the phytoplankton seasonal succession of the red sea, PLoS ONE, 8 (2013). doi: 10.1371/journal.pone.0064909.

[11]

S. K. SchmidtE. K. Costello and D. R. Nemergut, Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil, Ecology, 88 (2007), 1379-1385.  doi: 10.1890/06-0164.

[12]

U. SommerZ. M. Gliwicz and W. I. Lampert, The PEG-model of seasonal succession of planktonic events in fresh waters, Archiv für Hydrobiologie, 106 (1986), 433-471. 

[13]

H. Y. WangH. L. Wang and C. H. Ou, Spreading dynamics of a Lotka-Volterra competition model in periodic habitats, J. Differential Equations, 270 (2021), 664-693.  doi: 10.1016/j.jde.2020.08.016.

[14]

Y. X. Yue, Y. Z. Han, J. C. Tao and M. Ma, The minimal wave speed to the Lotka-Volterra competition model, J. Math. Anal. Appl., 488 (2020), 124106, 11pp. doi: 10.1016/j.jmaa.2020.124106.

[15]

Y. Zhang and X.-Q. Zhao, Bistable travelling waves for a reaction and diffusion model with seasonal succession*, Nonlinearity, 26 (2013), 691-709.  doi: 10.1088/0951-7715/26/3/691.

[16]

G. Zhao and S. Ruan, Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion, J. Math. Pures Appl., 95 (2011), 627-671.  doi: 10.1016/j.matpur.2010.11.005.

[17]

X.-Q. Zhao, Dynamical Systems in Population Biology, 2$^{nd}$ edition, Springer Nature, Switzerland, 2017.

[1]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[2]

Shuang-Ming Wang, Zhaosheng Feng, Zhi-Cheng Wang, Liang Zhang. Spreading speed and periodic traveling waves of a time periodic and diffusive SI epidemic model with demographic structure. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2005-2034. doi: 10.3934/cpaa.2021145

[3]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[4]

Hongqiu Chen, Jerry L. Bona. Periodic traveling--wave solutions of nonlinear dispersive evolution equations. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4841-4873. doi: 10.3934/dcds.2013.33.4841

[5]

Yilei Tang, Dongmei Xiao, Weinian Zhang, Di Zhu. Dynamics of epidemic models with asymptomatic infection and seasonal succession. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1407-1424. doi: 10.3934/mbe.2017073

[6]

Rui Peng, Xiao-Qiang Zhao. The diffusive logistic model with a free boundary and seasonal succession. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2007-2031. doi: 10.3934/dcds.2013.33.2007

[7]

Dashun Xu, Xiao-Qiang Zhao. Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1043-1056. doi: 10.3934/dcdsb.2005.5.1043

[8]

Aiyong Chen, Chi Zhang, Wentao Huang. Limit speed of traveling wave solutions for the perturbed generalized KdV equation. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022048

[9]

Minoru Murai, Kunimochi Sakamoto, Shoji Yotsutani. Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition. Conference Publications, 2015, 2015 (special) : 878-900. doi: 10.3934/proc.2015.0878

[10]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[11]

Guo Lin, Shuxia Pan. Periodic traveling wave solutions of periodic integrodifference systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3005-3031. doi: 10.3934/dcdsb.2020049

[12]

Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2161-2172. doi: 10.3934/dcdsb.2021014

[13]

Guangyu Zhao. Multidimensional periodic traveling waves in infinite cylinders. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 1025-1045. doi: 10.3934/dcds.2009.24.1025

[14]

Guy Métivier, Kevin Zumbrun. Large-amplitude modulation of periodic traveling waves. Discrete and Continuous Dynamical Systems - S, 2022, 15 (9) : 2609-2632. doi: 10.3934/dcdss.2022070

[15]

Jaime Angulo, Carlos Matheus, Didier Pilod. Global well-posedness and non-linear stability of periodic traveling waves for a Schrödinger-Benjamin-Ono system. Communications on Pure and Applied Analysis, 2009, 8 (3) : 815-844. doi: 10.3934/cpaa.2009.8.815

[16]

Linghai Zhang. Wave speed analysis of traveling wave fronts in delayed synaptically coupled neuronal networks. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2405-2450. doi: 10.3934/dcds.2014.34.2405

[17]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[18]

Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441

[19]

R. S. Johnson. A selection of nonlinear problems in water waves, analysed by perturbation-parameter techniques. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1497-1522. doi: 10.3934/cpaa.2012.11.1497

[20]

Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

2021 Impact Factor: 1.497

Article outline

[Back to Top]