
-
Previous Article
Tempered fractional order compartment models and applications in biology
- DCDS-B Home
- This Issue
-
Next Article
Global generalized solutions to the forager-exploiter model with logistic growth
Stability and applications of multi-order fractional systems
Department of Electrical Engineering, University of Chile, Av. Tupper 2007, Santiago, Chile |
This paper establishes conditions for global/local robust asymptotic stability for a class of multi-order nonlinear fractional systems consisting of a linear part plus a global/local Lipschitz nonlinear term. The derivation order can be different in each coordinate and take values in $ (0, 2) $. As a consequence, a linearized stability theorem for multi-order systems is also obtained. The stability conditions are order-dependent, reducing the conservatism of order-independent ones. Detailed examples in robust control and population dynamics show the applicability of our results. Simulations are attached, showing the distinctive features that justify multi-order modelling.
References:
[1] |
D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, 2 edition, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.
![]() ![]() |
[2] |
C. Bonnet and J. Partington,
Coprime factorizations and stability of fractional differential systems, Syst. Control. Lett., 41 (2000), 167-174.
doi: 10.1016/S0167-6911(00)00050-5. |
[3] |
O. Brandibur and E. Kaslik,
Stability of two-component incommensurate fractional-order systems and applications to the investigation of a FitzHugh-Nagumo neuronal model, Math. Methods. Appl. Sci., 41 (2018), 7182-7194.
doi: 10.1002/mma.4768. |
[4] |
J. Chen, K. Lundberg, D. Davison and D. Bernstein,
The Final Value Theorem Revisited - Infinite Limits and Irrational Functions, IEEE. Control. Syst. Mag., 27 (2007), 97-99.
|
[5] |
N. Cong, T. Doan, S. Siegmund and H. Tuan,
Linearized asymptotic stability for fractional differential equations, Electron. J. Qual. Theory Differ. Equ., 39 (2016), 1-13.
doi: 10.14232/ejqtde.2016.1.39. |
[6] |
W. Deng, C. Li and J. Lü,
Stability analysis of linear fractional differential system with multiple delays, Nonlinear Dynam., 48 (2007), 409-416.
doi: 10.1007/s11071-006-9094-0. |
[7] |
C. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties, Academic, New York, 1975.
![]() ![]() |
[8] |
K. Diethelm, S. Siegmund and H. T. Tuan,
Asymptotic behavior of solutions of linear multi-order fractional differential equation system, Fract. Calc. Appl. Anal., 20 (2017), 1165-1195.
doi: 10.1515/fca-2017-0062. |
[9] |
J. A. Gallegos, N. Aguila-Camacho and M. A. Duarte-Mermoud,
Smooth solutions to mixed-order fractional differential systems with applications to stability analysis, J. Integral Equations Appl., 31 (2019), 59-84.
doi: 10.1216/jie-2019-31-1-59. |
[10] |
J. A. Gallegos, N. Aguila-Camacho and M. A. Duarte-Mermoud,
Vector Lyapunov-like functions for multi-order fractional systems with multiple time-varying delays, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 105089.
doi: 10.1016/j.cnsns.2019.105089. |
[11] |
J. A. Gallegos and M. A. Duarte-Mermoud,
Robustness and convergence of fractional systems and their applications to adaptive systems, Fract. Calc. Appl. Anal., 20 (2017), 895-913.
doi: 10.1515/fca-2017-0047. |
[12] |
J. A. Gallegos and M. A. Duarte-Mermoud,
Converse theorems in Lyapunov's second method and applications for fractional order systems, Turkish J. Math., 43 (2019), 1626-1639.
doi: 10.3906/mat-1808-75. |
[13] |
A. Kilbas, H. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B. V., Amsterdam, 2006.
![]() ![]() |
[14] |
V. Lakshmikantham, V. M. Matrosov and S. Sivasundaram, Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems, Kluwer Academic Publishers, 1991.
doi: 10.1007/978-94-015-7939-1. |
[15] |
B. Lenka,
Fractional comparison method and asymptotic stability of multivariable fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 69 (2019), 398-415.
doi: 10.1016/j.cnsns.2018.09.016. |
[16] |
W. LePage, Complex Variables and the Laplace Transform for Engineers, Dover Publications, 1980. |
[17] |
C. M. A. Pinto, A. Mendes Lopes and J. A. T. Machado,
A review of power laws in real life phenomena, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3558-3578.
doi: 10.1016/j.cnsns.2012.01.013. |
[18] |
H. Taghavian and M. Tavazoei,
Robust stability analysis of uncertain multiorder fractional systems: Young and Jensen inequalities approach, Internat. J. Robust Nonlinear Control, 28 (2017), 1127-1144.
doi: 10.1002/rnc.3919. |
[19] |
M. Tavazoei and M. Asemani,
Fractional-order-dependent global stability analysis and observer-based synthesis for a class of nonlinear fractional-order systems, Internat. J. Robust Nonlinear Control, 28 (2018), 4549-4564.
doi: 10.1002/rnc.4250. |
[20] |
H. Tuan and H. Trinh,
Stability of fractional-order nonlinear systems by Lyapunov direct method, IET Control Theory Appl., 12 (2018), 2417-2422.
doi: 10.1049/iet-cta.2018.5233. |
[21] |
Z. Wang, D. Yang and H. Zhang,
Stability analysis on a class of nonlinear fractional-order system, Nonlinear Dynam., 86 (2016), 1023-1033.
doi: 10.1007/s11071-016-2943-6. |
show all references
References:
[1] |
D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, 2 edition, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.
![]() ![]() |
[2] |
C. Bonnet and J. Partington,
Coprime factorizations and stability of fractional differential systems, Syst. Control. Lett., 41 (2000), 167-174.
doi: 10.1016/S0167-6911(00)00050-5. |
[3] |
O. Brandibur and E. Kaslik,
Stability of two-component incommensurate fractional-order systems and applications to the investigation of a FitzHugh-Nagumo neuronal model, Math. Methods. Appl. Sci., 41 (2018), 7182-7194.
doi: 10.1002/mma.4768. |
[4] |
J. Chen, K. Lundberg, D. Davison and D. Bernstein,
The Final Value Theorem Revisited - Infinite Limits and Irrational Functions, IEEE. Control. Syst. Mag., 27 (2007), 97-99.
|
[5] |
N. Cong, T. Doan, S. Siegmund and H. Tuan,
Linearized asymptotic stability for fractional differential equations, Electron. J. Qual. Theory Differ. Equ., 39 (2016), 1-13.
doi: 10.14232/ejqtde.2016.1.39. |
[6] |
W. Deng, C. Li and J. Lü,
Stability analysis of linear fractional differential system with multiple delays, Nonlinear Dynam., 48 (2007), 409-416.
doi: 10.1007/s11071-006-9094-0. |
[7] |
C. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties, Academic, New York, 1975.
![]() ![]() |
[8] |
K. Diethelm, S. Siegmund and H. T. Tuan,
Asymptotic behavior of solutions of linear multi-order fractional differential equation system, Fract. Calc. Appl. Anal., 20 (2017), 1165-1195.
doi: 10.1515/fca-2017-0062. |
[9] |
J. A. Gallegos, N. Aguila-Camacho and M. A. Duarte-Mermoud,
Smooth solutions to mixed-order fractional differential systems with applications to stability analysis, J. Integral Equations Appl., 31 (2019), 59-84.
doi: 10.1216/jie-2019-31-1-59. |
[10] |
J. A. Gallegos, N. Aguila-Camacho and M. A. Duarte-Mermoud,
Vector Lyapunov-like functions for multi-order fractional systems with multiple time-varying delays, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 105089.
doi: 10.1016/j.cnsns.2019.105089. |
[11] |
J. A. Gallegos and M. A. Duarte-Mermoud,
Robustness and convergence of fractional systems and their applications to adaptive systems, Fract. Calc. Appl. Anal., 20 (2017), 895-913.
doi: 10.1515/fca-2017-0047. |
[12] |
J. A. Gallegos and M. A. Duarte-Mermoud,
Converse theorems in Lyapunov's second method and applications for fractional order systems, Turkish J. Math., 43 (2019), 1626-1639.
doi: 10.3906/mat-1808-75. |
[13] |
A. Kilbas, H. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B. V., Amsterdam, 2006.
![]() ![]() |
[14] |
V. Lakshmikantham, V. M. Matrosov and S. Sivasundaram, Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems, Kluwer Academic Publishers, 1991.
doi: 10.1007/978-94-015-7939-1. |
[15] |
B. Lenka,
Fractional comparison method and asymptotic stability of multivariable fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 69 (2019), 398-415.
doi: 10.1016/j.cnsns.2018.09.016. |
[16] |
W. LePage, Complex Variables and the Laplace Transform for Engineers, Dover Publications, 1980. |
[17] |
C. M. A. Pinto, A. Mendes Lopes and J. A. T. Machado,
A review of power laws in real life phenomena, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3558-3578.
doi: 10.1016/j.cnsns.2012.01.013. |
[18] |
H. Taghavian and M. Tavazoei,
Robust stability analysis of uncertain multiorder fractional systems: Young and Jensen inequalities approach, Internat. J. Robust Nonlinear Control, 28 (2017), 1127-1144.
doi: 10.1002/rnc.3919. |
[19] |
M. Tavazoei and M. Asemani,
Fractional-order-dependent global stability analysis and observer-based synthesis for a class of nonlinear fractional-order systems, Internat. J. Robust Nonlinear Control, 28 (2018), 4549-4564.
doi: 10.1002/rnc.4250. |
[20] |
H. Tuan and H. Trinh,
Stability of fractional-order nonlinear systems by Lyapunov direct method, IET Control Theory Appl., 12 (2018), 2417-2422.
doi: 10.1049/iet-cta.2018.5233. |
[21] |
Z. Wang, D. Yang and H. Zhang,
Stability analysis on a class of nonlinear fractional-order system, Nonlinear Dynam., 86 (2016), 1023-1033.
doi: 10.1007/s11071-016-2943-6. |


[1] |
Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057 |
[2] |
Iman Malmir. Caputo fractional derivative operational matrices of Legendre and Chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 395-426. doi: 10.3934/naco.2021013 |
[3] |
Piotr Grabowski. On analytic semigroup generators involving Caputo fractional derivative. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022014 |
[4] |
Emiliano Cristiani, Elisa Iacomini. An interface-free multi-scale multi-order model for traffic flow. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6189-6207. doi: 10.3934/dcdsb.2019135 |
[5] |
Muhammad Bilal Riaz, Syed Tauseef Saeed. Comprehensive analysis of integer-order, Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional time derivative for MHD Oldroyd-B fluid with slip effect and time dependent boundary condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3719-3746. doi: 10.3934/dcdss.2020430 |
[6] |
Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The numerical solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 621-636. doi: 10.3934/naco.2021026 |
[7] |
Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317 |
[8] |
Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control and Related Fields, 2020, 10 (1) : 141-156. doi: 10.3934/mcrf.2019033 |
[9] |
Kolade M. Owolabi, Abdon Atangana, Jose Francisco Gómez-Aguilar. Fractional Adams-Bashforth scheme with the Liouville-Caputo derivative and application to chaotic systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2455-2469. doi: 10.3934/dcdss.2021060 |
[10] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023 |
[11] |
Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6483-6510. doi: 10.3934/dcdsb.2021030 |
[12] |
Platon Surkov. Dynamical estimation of a noisy input in a system with a Caputo fractional derivative. The case of continuous measurements of a part of phase coordinates. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022020 |
[13] |
Cecilia Cavaterra, M. Grasselli. Robust exponential attractors for population dynamics models with infinite time delay. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1051-1076. doi: 10.3934/dcdsb.2006.6.1051 |
[14] |
Henri Berestycki, Jean-Michel Roquejoffre, Luca Rossi. The periodic patch model for population dynamics with fractional diffusion. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 1-13. doi: 10.3934/dcdss.2011.4.1 |
[15] |
Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations and Control Theory, 2022, 11 (1) : 239-258. doi: 10.3934/eect.2021001 |
[16] |
Fangfang Dong, Yunmei Chen. A fractional-order derivative based variational framework for image denoising. Inverse Problems and Imaging, 2016, 10 (1) : 27-50. doi: 10.3934/ipi.2016.10.27 |
[17] |
Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 937-956. doi: 10.3934/dcdss.2020055 |
[18] |
Z.-R. He, M.-S. Wang, Z.-E. Ma. Optimal birth control problems for nonlinear age-structured population dynamics. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 589-594. doi: 10.3934/dcdsb.2004.4.589 |
[19] |
M. M. El-Dessoky, Muhammad Altaf Khan. Application of Caputo-Fabrizio derivative to a cancer model with unknown parameters. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3557-3575. doi: 10.3934/dcdss.2020429 |
[20] |
Kolade M. Owolabi, Abdon Atangana. High-order solvers for space-fractional differential equations with Riesz derivative. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 567-590. doi: 10.3934/dcdss.2019037 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]