This paper establishes conditions for global/local robust asymptotic stability for a class of multi-order nonlinear fractional systems consisting of a linear part plus a global/local Lipschitz nonlinear term. The derivation order can be different in each coordinate and take values in $ (0, 2) $. As a consequence, a linearized stability theorem for multi-order systems is also obtained. The stability conditions are order-dependent, reducing the conservatism of order-independent ones. Detailed examples in robust control and population dynamics show the applicability of our results. Simulations are attached, showing the distinctive features that justify multi-order modelling.
Citation: |
[1] |
D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, 2 edition, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.
![]() ![]() |
[2] |
C. Bonnet and J. Partington, Coprime factorizations and stability of fractional differential systems, Syst. Control. Lett., 41 (2000), 167-174.
doi: 10.1016/S0167-6911(00)00050-5.![]() ![]() ![]() |
[3] |
O. Brandibur and E. Kaslik, Stability of two-component incommensurate fractional-order systems and applications to the investigation of a FitzHugh-Nagumo neuronal model, Math. Methods. Appl. Sci., 41 (2018), 7182-7194.
doi: 10.1002/mma.4768.![]() ![]() ![]() |
[4] |
J. Chen, K. Lundberg, D. Davison and D. Bernstein, The Final Value Theorem Revisited - Infinite Limits and Irrational Functions, IEEE. Control. Syst. Mag., 27 (2007), 97-99.
![]() |
[5] |
N. Cong, T. Doan, S. Siegmund and H. Tuan, Linearized asymptotic stability for fractional differential equations, Electron. J. Qual. Theory Differ. Equ., 39 (2016), 1-13.
doi: 10.14232/ejqtde.2016.1.39.![]() ![]() ![]() |
[6] |
W. Deng, C. Li and J. Lü, Stability analysis of linear fractional differential system with multiple delays, Nonlinear Dynam., 48 (2007), 409-416.
doi: 10.1007/s11071-006-9094-0.![]() ![]() ![]() |
[7] |
C. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties, Academic, New York, 1975.
![]() ![]() |
[8] |
K. Diethelm, S. Siegmund and H. T. Tuan, Asymptotic behavior of solutions of linear multi-order fractional differential equation system, Fract. Calc. Appl. Anal., 20 (2017), 1165-1195.
doi: 10.1515/fca-2017-0062.![]() ![]() ![]() |
[9] |
J. A. Gallegos, N. Aguila-Camacho and M. A. Duarte-Mermoud, Smooth solutions to mixed-order fractional differential systems with applications to stability analysis, J. Integral Equations Appl., 31 (2019), 59-84.
doi: 10.1216/jie-2019-31-1-59.![]() ![]() ![]() |
[10] |
J. A. Gallegos, N. Aguila-Camacho and M. A. Duarte-Mermoud, Vector Lyapunov-like functions for multi-order fractional systems with multiple time-varying delays, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 105089.
doi: 10.1016/j.cnsns.2019.105089.![]() ![]() ![]() |
[11] |
J. A. Gallegos and M. A. Duarte-Mermoud, Robustness and convergence of fractional systems and their applications to adaptive systems, Fract. Calc. Appl. Anal., 20 (2017), 895-913.
doi: 10.1515/fca-2017-0047.![]() ![]() ![]() |
[12] |
J. A. Gallegos and M. A. Duarte-Mermoud, Converse theorems in Lyapunov's second method and applications for fractional order systems, Turkish J. Math., 43 (2019), 1626-1639.
doi: 10.3906/mat-1808-75.![]() ![]() ![]() |
[13] |
A. Kilbas, H. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B. V., Amsterdam, 2006.
![]() ![]() |
[14] |
V. Lakshmikantham, V. M. Matrosov and S. Sivasundaram, Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems, Kluwer Academic Publishers, 1991.
doi: 10.1007/978-94-015-7939-1.![]() ![]() ![]() |
[15] |
B. Lenka, Fractional comparison method and asymptotic stability of multivariable fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 69 (2019), 398-415.
doi: 10.1016/j.cnsns.2018.09.016.![]() ![]() ![]() |
[16] |
W. LePage, Complex Variables and the Laplace Transform for Engineers, Dover Publications, 1980.
![]() ![]() |
[17] |
C. M. A. Pinto, A. Mendes Lopes and J. A. T. Machado, A review of power laws in real life phenomena, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3558-3578.
doi: 10.1016/j.cnsns.2012.01.013.![]() ![]() ![]() |
[18] |
H. Taghavian and M. Tavazoei, Robust stability analysis of uncertain multiorder fractional systems: Young and Jensen inequalities approach, Internat. J. Robust Nonlinear Control, 28 (2017), 1127-1144.
doi: 10.1002/rnc.3919.![]() ![]() ![]() |
[19] |
M. Tavazoei and M. Asemani, Fractional-order-dependent global stability analysis and observer-based synthesis for a class of nonlinear fractional-order systems, Internat. J. Robust Nonlinear Control, 28 (2018), 4549-4564.
doi: 10.1002/rnc.4250.![]() ![]() ![]() |
[20] |
H. Tuan and H. Trinh, Stability of fractional-order nonlinear systems by Lyapunov direct method, IET Control Theory Appl., 12 (2018), 2417-2422.
doi: 10.1049/iet-cta.2018.5233.![]() ![]() ![]() |
[21] |
Z. Wang, D. Yang and H. Zhang, Stability analysis on a class of nonlinear fractional-order system, Nonlinear Dynam., 86 (2016), 1023-1033.
doi: 10.1007/s11071-016-2943-6.![]() ![]() ![]() |
Robust performance
Population dynamics depending on the derivation order