September  2022, 27(9): 5283-5296. doi: 10.3934/dcdsb.2021274

Stability and applications of multi-order fractional systems

Department of Electrical Engineering, University of Chile, Av. Tupper 2007, Santiago, Chile

Received  September 2020 Revised  August 2021 Published  September 2022 Early access  November 2021

Fund Project: The author thanks the anonymous reviewers for their comments. This research was supported by CONICYTPCHA/National PhD scholarship program, 2018

This paper establishes conditions for global/local robust asymptotic stability for a class of multi-order nonlinear fractional systems consisting of a linear part plus a global/local Lipschitz nonlinear term. The derivation order can be different in each coordinate and take values in $ (0, 2) $. As a consequence, a linearized stability theorem for multi-order systems is also obtained. The stability conditions are order-dependent, reducing the conservatism of order-independent ones. Detailed examples in robust control and population dynamics show the applicability of our results. Simulations are attached, showing the distinctive features that justify multi-order modelling.

Citation: Javier Gallegos. Stability and applications of multi-order fractional systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (9) : 5283-5296. doi: 10.3934/dcdsb.2021274
References:
[1] D. BaleanuK. DiethelmE. Scalas and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, 2 edition, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. 
[2]

C. Bonnet and J. Partington, Coprime factorizations and stability of fractional differential systems, Syst. Control. Lett., 41 (2000), 167-174.  doi: 10.1016/S0167-6911(00)00050-5.

[3]

O. Brandibur and E. Kaslik, Stability of two-component incommensurate fractional-order systems and applications to the investigation of a FitzHugh-Nagumo neuronal model, Math. Methods. Appl. Sci., 41 (2018), 7182-7194.  doi: 10.1002/mma.4768.

[4]

J. ChenK. LundbergD. Davison and D. Bernstein, The Final Value Theorem Revisited - Infinite Limits and Irrational Functions, IEEE. Control. Syst. Mag., 27 (2007), 97-99. 

[5]

N. CongT. DoanS. Siegmund and H. Tuan, Linearized asymptotic stability for fractional differential equations, Electron. J. Qual. Theory Differ. Equ., 39 (2016), 1-13.  doi: 10.14232/ejqtde.2016.1.39.

[6]

W. DengC. Li and J. Lü, Stability analysis of linear fractional differential system with multiple delays, Nonlinear Dynam., 48 (2007), 409-416.  doi: 10.1007/s11071-006-9094-0.

[7] C. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties, Academic, New York, 1975. 
[8]

K. DiethelmS. Siegmund and H. T. Tuan, Asymptotic behavior of solutions of linear multi-order fractional differential equation system, Fract. Calc. Appl. Anal., 20 (2017), 1165-1195.  doi: 10.1515/fca-2017-0062.

[9]

J. A. GallegosN. Aguila-Camacho and M. A. Duarte-Mermoud, Smooth solutions to mixed-order fractional differential systems with applications to stability analysis, J. Integral Equations Appl., 31 (2019), 59-84.  doi: 10.1216/jie-2019-31-1-59.

[10]

J. A. GallegosN. Aguila-Camacho and M. A. Duarte-Mermoud, Vector Lyapunov-like functions for multi-order fractional systems with multiple time-varying delays, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 105089.  doi: 10.1016/j.cnsns.2019.105089.

[11]

J. A. Gallegos and M. A. Duarte-Mermoud, Robustness and convergence of fractional systems and their applications to adaptive systems, Fract. Calc. Appl. Anal., 20 (2017), 895-913.  doi: 10.1515/fca-2017-0047.

[12]

J. A. Gallegos and M. A. Duarte-Mermoud, Converse theorems in Lyapunov's second method and applications for fractional order systems, Turkish J. Math., 43 (2019), 1626-1639.  doi: 10.3906/mat-1808-75.

[13] A. KilbasH. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B. V., Amsterdam, 2006. 
[14]

V. Lakshmikantham, V. M. Matrosov and S. Sivasundaram, Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems, Kluwer Academic Publishers, 1991. doi: 10.1007/978-94-015-7939-1.

[15]

B. Lenka, Fractional comparison method and asymptotic stability of multivariable fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 69 (2019), 398-415.  doi: 10.1016/j.cnsns.2018.09.016.

[16]

W. LePage, Complex Variables and the Laplace Transform for Engineers, Dover Publications, 1980.

[17]

C. M. A. PintoA. Mendes Lopes and J. A. T. Machado, A review of power laws in real life phenomena, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3558-3578.  doi: 10.1016/j.cnsns.2012.01.013.

[18]

H. Taghavian and M. Tavazoei, Robust stability analysis of uncertain multiorder fractional systems: Young and Jensen inequalities approach, Internat. J. Robust Nonlinear Control, 28 (2017), 1127-1144.  doi: 10.1002/rnc.3919.

[19]

M. Tavazoei and M. Asemani, Fractional-order-dependent global stability analysis and observer-based synthesis for a class of nonlinear fractional-order systems, Internat. J. Robust Nonlinear Control, 28 (2018), 4549-4564.  doi: 10.1002/rnc.4250.

[20]

H. Tuan and H. Trinh, Stability of fractional-order nonlinear systems by Lyapunov direct method, IET Control Theory Appl., 12 (2018), 2417-2422.  doi: 10.1049/iet-cta.2018.5233.

[21]

Z. WangD. Yang and H. Zhang, Stability analysis on a class of nonlinear fractional-order system, Nonlinear Dynam., 86 (2016), 1023-1033.  doi: 10.1007/s11071-016-2943-6.

show all references

References:
[1] D. BaleanuK. DiethelmE. Scalas and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, 2 edition, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. 
[2]

C. Bonnet and J. Partington, Coprime factorizations and stability of fractional differential systems, Syst. Control. Lett., 41 (2000), 167-174.  doi: 10.1016/S0167-6911(00)00050-5.

[3]

O. Brandibur and E. Kaslik, Stability of two-component incommensurate fractional-order systems and applications to the investigation of a FitzHugh-Nagumo neuronal model, Math. Methods. Appl. Sci., 41 (2018), 7182-7194.  doi: 10.1002/mma.4768.

[4]

J. ChenK. LundbergD. Davison and D. Bernstein, The Final Value Theorem Revisited - Infinite Limits and Irrational Functions, IEEE. Control. Syst. Mag., 27 (2007), 97-99. 

[5]

N. CongT. DoanS. Siegmund and H. Tuan, Linearized asymptotic stability for fractional differential equations, Electron. J. Qual. Theory Differ. Equ., 39 (2016), 1-13.  doi: 10.14232/ejqtde.2016.1.39.

[6]

W. DengC. Li and J. Lü, Stability analysis of linear fractional differential system with multiple delays, Nonlinear Dynam., 48 (2007), 409-416.  doi: 10.1007/s11071-006-9094-0.

[7] C. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties, Academic, New York, 1975. 
[8]

K. DiethelmS. Siegmund and H. T. Tuan, Asymptotic behavior of solutions of linear multi-order fractional differential equation system, Fract. Calc. Appl. Anal., 20 (2017), 1165-1195.  doi: 10.1515/fca-2017-0062.

[9]

J. A. GallegosN. Aguila-Camacho and M. A. Duarte-Mermoud, Smooth solutions to mixed-order fractional differential systems with applications to stability analysis, J. Integral Equations Appl., 31 (2019), 59-84.  doi: 10.1216/jie-2019-31-1-59.

[10]

J. A. GallegosN. Aguila-Camacho and M. A. Duarte-Mermoud, Vector Lyapunov-like functions for multi-order fractional systems with multiple time-varying delays, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 105089.  doi: 10.1016/j.cnsns.2019.105089.

[11]

J. A. Gallegos and M. A. Duarte-Mermoud, Robustness and convergence of fractional systems and their applications to adaptive systems, Fract. Calc. Appl. Anal., 20 (2017), 895-913.  doi: 10.1515/fca-2017-0047.

[12]

J. A. Gallegos and M. A. Duarte-Mermoud, Converse theorems in Lyapunov's second method and applications for fractional order systems, Turkish J. Math., 43 (2019), 1626-1639.  doi: 10.3906/mat-1808-75.

[13] A. KilbasH. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B. V., Amsterdam, 2006. 
[14]

V. Lakshmikantham, V. M. Matrosov and S. Sivasundaram, Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems, Kluwer Academic Publishers, 1991. doi: 10.1007/978-94-015-7939-1.

[15]

B. Lenka, Fractional comparison method and asymptotic stability of multivariable fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 69 (2019), 398-415.  doi: 10.1016/j.cnsns.2018.09.016.

[16]

W. LePage, Complex Variables and the Laplace Transform for Engineers, Dover Publications, 1980.

[17]

C. M. A. PintoA. Mendes Lopes and J. A. T. Machado, A review of power laws in real life phenomena, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3558-3578.  doi: 10.1016/j.cnsns.2012.01.013.

[18]

H. Taghavian and M. Tavazoei, Robust stability analysis of uncertain multiorder fractional systems: Young and Jensen inequalities approach, Internat. J. Robust Nonlinear Control, 28 (2017), 1127-1144.  doi: 10.1002/rnc.3919.

[19]

M. Tavazoei and M. Asemani, Fractional-order-dependent global stability analysis and observer-based synthesis for a class of nonlinear fractional-order systems, Internat. J. Robust Nonlinear Control, 28 (2018), 4549-4564.  doi: 10.1002/rnc.4250.

[20]

H. Tuan and H. Trinh, Stability of fractional-order nonlinear systems by Lyapunov direct method, IET Control Theory Appl., 12 (2018), 2417-2422.  doi: 10.1049/iet-cta.2018.5233.

[21]

Z. WangD. Yang and H. Zhang, Stability analysis on a class of nonlinear fractional-order system, Nonlinear Dynam., 86 (2016), 1023-1033.  doi: 10.1007/s11071-016-2943-6.

Figure 1.  Robust performance
Figure 2.  Population dynamics depending on the derivation order
[1]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057

[2]

Iman Malmir. Caputo fractional derivative operational matrices of Legendre and Chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 395-426. doi: 10.3934/naco.2021013

[3]

Piotr Grabowski. On analytic semigroup generators involving Caputo fractional derivative. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022014

[4]

Emiliano Cristiani, Elisa Iacomini. An interface-free multi-scale multi-order model for traffic flow. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6189-6207. doi: 10.3934/dcdsb.2019135

[5]

Muhammad Bilal Riaz, Syed Tauseef Saeed. Comprehensive analysis of integer-order, Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional time derivative for MHD Oldroyd-B fluid with slip effect and time dependent boundary condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3719-3746. doi: 10.3934/dcdss.2020430

[6]

Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The numerical solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 621-636. doi: 10.3934/naco.2021026

[7]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

[8]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control and Related Fields, 2020, 10 (1) : 141-156. doi: 10.3934/mcrf.2019033

[9]

Kolade M. Owolabi, Abdon Atangana, Jose Francisco Gómez-Aguilar. Fractional Adams-Bashforth scheme with the Liouville-Caputo derivative and application to chaotic systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2455-2469. doi: 10.3934/dcdss.2021060

[10]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023

[11]

Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6483-6510. doi: 10.3934/dcdsb.2021030

[12]

Platon Surkov. Dynamical estimation of a noisy input in a system with a Caputo fractional derivative. The case of continuous measurements of a part of phase coordinates. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022020

[13]

Cecilia Cavaterra, M. Grasselli. Robust exponential attractors for population dynamics models with infinite time delay. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1051-1076. doi: 10.3934/dcdsb.2006.6.1051

[14]

Henri Berestycki, Jean-Michel Roquejoffre, Luca Rossi. The periodic patch model for population dynamics with fractional diffusion. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 1-13. doi: 10.3934/dcdss.2011.4.1

[15]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations and Control Theory, 2022, 11 (1) : 239-258. doi: 10.3934/eect.2021001

[16]

Fangfang Dong, Yunmei Chen. A fractional-order derivative based variational framework for image denoising. Inverse Problems and Imaging, 2016, 10 (1) : 27-50. doi: 10.3934/ipi.2016.10.27

[17]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 937-956. doi: 10.3934/dcdss.2020055

[18]

Z.-R. He, M.-S. Wang, Z.-E. Ma. Optimal birth control problems for nonlinear age-structured population dynamics. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 589-594. doi: 10.3934/dcdsb.2004.4.589

[19]

M. M. El-Dessoky, Muhammad Altaf Khan. Application of Caputo-Fabrizio derivative to a cancer model with unknown parameters. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3557-3575. doi: 10.3934/dcdss.2020429

[20]

Kolade M. Owolabi, Abdon Atangana. High-order solvers for space-fractional differential equations with Riesz derivative. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 567-590. doi: 10.3934/dcdss.2019037

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (405)
  • HTML views (288)
  • Cited by (0)

Other articles
by authors

[Back to Top]