doi: 10.3934/dcdsb.2021274
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Stability and applications of multi-order fractional systems

Department of Electrical Engineering, University of Chile, Av. Tupper 2007, Santiago, Chile

Received  September 2020 Revised  August 2021 Early access November 2021

Fund Project: The author thanks the anonymous reviewers for their comments. This research was supported by CONICYTPCHA/National PhD scholarship program, 2018

This paper establishes conditions for global/local robust asymptotic stability for a class of multi-order nonlinear fractional systems consisting of a linear part plus a global/local Lipschitz nonlinear term. The derivation order can be different in each coordinate and take values in $ (0, 2) $. As a consequence, a linearized stability theorem for multi-order systems is also obtained. The stability conditions are order-dependent, reducing the conservatism of order-independent ones. Detailed examples in robust control and population dynamics show the applicability of our results. Simulations are attached, showing the distinctive features that justify multi-order modelling.

Citation: Javier Gallegos. Stability and applications of multi-order fractional systems. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021274
References:
[1] D. BaleanuK. DiethelmE. Scalas and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, 2 edition, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.   Google Scholar
[2]

C. Bonnet and J. Partington, Coprime factorizations and stability of fractional differential systems, Syst. Control. Lett., 41 (2000), 167-174.  doi: 10.1016/S0167-6911(00)00050-5.  Google Scholar

[3]

O. Brandibur and E. Kaslik, Stability of two-component incommensurate fractional-order systems and applications to the investigation of a FitzHugh-Nagumo neuronal model, Math. Methods. Appl. Sci., 41 (2018), 7182-7194.  doi: 10.1002/mma.4768.  Google Scholar

[4]

J. ChenK. LundbergD. Davison and D. Bernstein, The Final Value Theorem Revisited - Infinite Limits and Irrational Functions, IEEE. Control. Syst. Mag., 27 (2007), 97-99.   Google Scholar

[5]

N. CongT. DoanS. Siegmund and H. Tuan, Linearized asymptotic stability for fractional differential equations, Electron. J. Qual. Theory Differ. Equ., 39 (2016), 1-13.  doi: 10.14232/ejqtde.2016.1.39.  Google Scholar

[6]

W. DengC. Li and J. Lü, Stability analysis of linear fractional differential system with multiple delays, Nonlinear Dynam., 48 (2007), 409-416.  doi: 10.1007/s11071-006-9094-0.  Google Scholar

[7] C. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties, Academic, New York, 1975.   Google Scholar
[8]

K. DiethelmS. Siegmund and H. T. Tuan, Asymptotic behavior of solutions of linear multi-order fractional differential equation system, Fract. Calc. Appl. Anal., 20 (2017), 1165-1195.  doi: 10.1515/fca-2017-0062.  Google Scholar

[9]

J. A. GallegosN. Aguila-Camacho and M. A. Duarte-Mermoud, Smooth solutions to mixed-order fractional differential systems with applications to stability analysis, J. Integral Equations Appl., 31 (2019), 59-84.  doi: 10.1216/jie-2019-31-1-59.  Google Scholar

[10]

J. A. GallegosN. Aguila-Camacho and M. A. Duarte-Mermoud, Vector Lyapunov-like functions for multi-order fractional systems with multiple time-varying delays, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 105089.  doi: 10.1016/j.cnsns.2019.105089.  Google Scholar

[11]

J. A. Gallegos and M. A. Duarte-Mermoud, Robustness and convergence of fractional systems and their applications to adaptive systems, Fract. Calc. Appl. Anal., 20 (2017), 895-913.  doi: 10.1515/fca-2017-0047.  Google Scholar

[12]

J. A. Gallegos and M. A. Duarte-Mermoud, Converse theorems in Lyapunov's second method and applications for fractional order systems, Turkish J. Math., 43 (2019), 1626-1639.  doi: 10.3906/mat-1808-75.  Google Scholar

[13] A. KilbasH. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B. V., Amsterdam, 2006.   Google Scholar
[14]

V. Lakshmikantham, V. M. Matrosov and S. Sivasundaram, Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems, Kluwer Academic Publishers, 1991. doi: 10.1007/978-94-015-7939-1.  Google Scholar

[15]

B. Lenka, Fractional comparison method and asymptotic stability of multivariable fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 69 (2019), 398-415.  doi: 10.1016/j.cnsns.2018.09.016.  Google Scholar

[16]

W. LePage, Complex Variables and the Laplace Transform for Engineers, Dover Publications, 1980.  Google Scholar

[17]

C. M. A. PintoA. Mendes Lopes and J. A. T. Machado, A review of power laws in real life phenomena, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3558-3578.  doi: 10.1016/j.cnsns.2012.01.013.  Google Scholar

[18]

H. Taghavian and M. Tavazoei, Robust stability analysis of uncertain multiorder fractional systems: Young and Jensen inequalities approach, Internat. J. Robust Nonlinear Control, 28 (2017), 1127-1144.  doi: 10.1002/rnc.3919.  Google Scholar

[19]

M. Tavazoei and M. Asemani, Fractional-order-dependent global stability analysis and observer-based synthesis for a class of nonlinear fractional-order systems, Internat. J. Robust Nonlinear Control, 28 (2018), 4549-4564.  doi: 10.1002/rnc.4250.  Google Scholar

[20]

H. Tuan and H. Trinh, Stability of fractional-order nonlinear systems by Lyapunov direct method, IET Control Theory Appl., 12 (2018), 2417-2422.  doi: 10.1049/iet-cta.2018.5233.  Google Scholar

[21]

Z. WangD. Yang and H. Zhang, Stability analysis on a class of nonlinear fractional-order system, Nonlinear Dynam., 86 (2016), 1023-1033.  doi: 10.1007/s11071-016-2943-6.  Google Scholar

show all references

References:
[1] D. BaleanuK. DiethelmE. Scalas and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, 2 edition, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.   Google Scholar
[2]

C. Bonnet and J. Partington, Coprime factorizations and stability of fractional differential systems, Syst. Control. Lett., 41 (2000), 167-174.  doi: 10.1016/S0167-6911(00)00050-5.  Google Scholar

[3]

O. Brandibur and E. Kaslik, Stability of two-component incommensurate fractional-order systems and applications to the investigation of a FitzHugh-Nagumo neuronal model, Math. Methods. Appl. Sci., 41 (2018), 7182-7194.  doi: 10.1002/mma.4768.  Google Scholar

[4]

J. ChenK. LundbergD. Davison and D. Bernstein, The Final Value Theorem Revisited - Infinite Limits and Irrational Functions, IEEE. Control. Syst. Mag., 27 (2007), 97-99.   Google Scholar

[5]

N. CongT. DoanS. Siegmund and H. Tuan, Linearized asymptotic stability for fractional differential equations, Electron. J. Qual. Theory Differ. Equ., 39 (2016), 1-13.  doi: 10.14232/ejqtde.2016.1.39.  Google Scholar

[6]

W. DengC. Li and J. Lü, Stability analysis of linear fractional differential system with multiple delays, Nonlinear Dynam., 48 (2007), 409-416.  doi: 10.1007/s11071-006-9094-0.  Google Scholar

[7] C. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties, Academic, New York, 1975.   Google Scholar
[8]

K. DiethelmS. Siegmund and H. T. Tuan, Asymptotic behavior of solutions of linear multi-order fractional differential equation system, Fract. Calc. Appl. Anal., 20 (2017), 1165-1195.  doi: 10.1515/fca-2017-0062.  Google Scholar

[9]

J. A. GallegosN. Aguila-Camacho and M. A. Duarte-Mermoud, Smooth solutions to mixed-order fractional differential systems with applications to stability analysis, J. Integral Equations Appl., 31 (2019), 59-84.  doi: 10.1216/jie-2019-31-1-59.  Google Scholar

[10]

J. A. GallegosN. Aguila-Camacho and M. A. Duarte-Mermoud, Vector Lyapunov-like functions for multi-order fractional systems with multiple time-varying delays, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 105089.  doi: 10.1016/j.cnsns.2019.105089.  Google Scholar

[11]

J. A. Gallegos and M. A. Duarte-Mermoud, Robustness and convergence of fractional systems and their applications to adaptive systems, Fract. Calc. Appl. Anal., 20 (2017), 895-913.  doi: 10.1515/fca-2017-0047.  Google Scholar

[12]

J. A. Gallegos and M. A. Duarte-Mermoud, Converse theorems in Lyapunov's second method and applications for fractional order systems, Turkish J. Math., 43 (2019), 1626-1639.  doi: 10.3906/mat-1808-75.  Google Scholar

[13] A. KilbasH. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B. V., Amsterdam, 2006.   Google Scholar
[14]

V. Lakshmikantham, V. M. Matrosov and S. Sivasundaram, Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems, Kluwer Academic Publishers, 1991. doi: 10.1007/978-94-015-7939-1.  Google Scholar

[15]

B. Lenka, Fractional comparison method and asymptotic stability of multivariable fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 69 (2019), 398-415.  doi: 10.1016/j.cnsns.2018.09.016.  Google Scholar

[16]

W. LePage, Complex Variables and the Laplace Transform for Engineers, Dover Publications, 1980.  Google Scholar

[17]

C. M. A. PintoA. Mendes Lopes and J. A. T. Machado, A review of power laws in real life phenomena, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3558-3578.  doi: 10.1016/j.cnsns.2012.01.013.  Google Scholar

[18]

H. Taghavian and M. Tavazoei, Robust stability analysis of uncertain multiorder fractional systems: Young and Jensen inequalities approach, Internat. J. Robust Nonlinear Control, 28 (2017), 1127-1144.  doi: 10.1002/rnc.3919.  Google Scholar

[19]

M. Tavazoei and M. Asemani, Fractional-order-dependent global stability analysis and observer-based synthesis for a class of nonlinear fractional-order systems, Internat. J. Robust Nonlinear Control, 28 (2018), 4549-4564.  doi: 10.1002/rnc.4250.  Google Scholar

[20]

H. Tuan and H. Trinh, Stability of fractional-order nonlinear systems by Lyapunov direct method, IET Control Theory Appl., 12 (2018), 2417-2422.  doi: 10.1049/iet-cta.2018.5233.  Google Scholar

[21]

Z. WangD. Yang and H. Zhang, Stability analysis on a class of nonlinear fractional-order system, Nonlinear Dynam., 86 (2016), 1023-1033.  doi: 10.1007/s11071-016-2943-6.  Google Scholar

Figure 1.  Robust performance
Figure 2.  Population dynamics depending on the derivation order
[1]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057

[2]

Iman Malmir. Caputo fractional derivative operational matrices of Legendre and Chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021013

[3]

Emiliano Cristiani, Elisa Iacomini. An interface-free multi-scale multi-order model for traffic flow. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6189-6207. doi: 10.3934/dcdsb.2019135

[4]

Muhammad Bilal Riaz, Syed Tauseef Saeed. Comprehensive analysis of integer-order, Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional time derivative for MHD Oldroyd-B fluid with slip effect and time dependent boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3719-3746. doi: 10.3934/dcdss.2020430

[5]

Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The Numerical Solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021026

[6]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

[7]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control & Related Fields, 2020, 10 (1) : 141-156. doi: 10.3934/mcrf.2019033

[8]

Kolade M. Owolabi, Abdon Atangana, Jose Francisco Gómez-Aguilar. Fractional Adams-Bashforth scheme with the Liouville-Caputo derivative and application to chaotic systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2455-2469. doi: 10.3934/dcdss.2021060

[9]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023

[10]

Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6483-6510. doi: 10.3934/dcdsb.2021030

[11]

Cecilia Cavaterra, M. Grasselli. Robust exponential attractors for population dynamics models with infinite time delay. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1051-1076. doi: 10.3934/dcdsb.2006.6.1051

[12]

Henri Berestycki, Jean-Michel Roquejoffre, Luca Rossi. The periodic patch model for population dynamics with fractional diffusion. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 1-13. doi: 10.3934/dcdss.2011.4.1

[13]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2022, 11 (1) : 239-258. doi: 10.3934/eect.2021001

[14]

Fangfang Dong, Yunmei Chen. A fractional-order derivative based variational framework for image denoising. Inverse Problems & Imaging, 2016, 10 (1) : 27-50. doi: 10.3934/ipi.2016.10.27

[15]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 937-956. doi: 10.3934/dcdss.2020055

[16]

Z.-R. He, M.-S. Wang, Z.-E. Ma. Optimal birth control problems for nonlinear age-structured population dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 589-594. doi: 10.3934/dcdsb.2004.4.589

[17]

M. M. El-Dessoky, Muhammad Altaf Khan. Application of Caputo-Fabrizio derivative to a cancer model with unknown parameters. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3557-3575. doi: 10.3934/dcdss.2020429

[18]

Kolade M. Owolabi, Abdon Atangana. High-order solvers for space-fractional differential equations with Riesz derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 567-590. doi: 10.3934/dcdss.2019037

[19]

Krunal B. Kachhia, Abdon Atangana. Electromagnetic waves described by a fractional derivative of variable and constant order with non singular kernel. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2357-2371. doi: 10.3934/dcdss.2020172

[20]

Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 1017-1029. doi: 10.3934/dcdss.2020060

2020 Impact Factor: 1.327

Article outline

Figures and Tables

[Back to Top]