doi: 10.3934/dcdsb.2021278
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

A delayed dynamical model for COVID-19 therapy with defective interfering particles and artificial antibodies

Department of Applied Mathematics, Shanghai Normal University, Road Guilin No.100, 200234, Shanghai, China

* Corresponding author: Yepeng Xing

Received  June 2021 Revised  October 2021 Early access November 2021

Fund Project: The authors were supported by National Natural Science Foundation of China (No.12071297, No.12171320)

In this paper, we use delay differential equations to propose a mathematical model for COVID-19 therapy with both defective interfering particles and artificial antibodies. For this model, the basic reproduction number $ \mathcal{R}_0 $ is given and its threshold properties are discussed. When $ \mathcal{R}_0<1 $, the disease-free equilibrium $ E_0 $ is globally asymptotically stable. When $ \mathcal{R}_0>1 $, $ E_0 $ becomes unstable and the infectious equilibrium without defective interfering particles $ E_1 $ comes into existence. There exists a positive constant $ R_1 $ such that $ E_1 $ is globally asymptotically stable when $ R_1<1<\mathcal{R}_0 $. Further, when $ R_1>1 $, $ E_1 $ loses its stability and infectious equilibrium with defective interfering particles $ E_2 $ occurs. There exists a constant $ R_2 $ such that $ E_2 $ is asymptotically stable without time delay if $ 1<R_1<\mathcal{R}_0<R_2 $ and it loses its stability via Hopf bifurcation as the time delay increases. Numerical simulation is also presented to demonstrate the applicability of the theoretical predictions.

Citation: Yanfei Zhao, Yepeng Xing. A delayed dynamical model for COVID-19 therapy with defective interfering particles and artificial antibodies. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021278
References:
[1]

D. Adam, What scientists know about new, fast-spreading coronavirus variants, Nature, 594 (2021), 19-20. 

[2]

C. M. Bangham and T. B. L. Kirkwood, Defective interfering particles: Effects in modulating virus growth and persistence, Virology, 179 (1990), 821-826.  doi: 10.1016/0042-6822(90)90150-P.

[3]

A. Baum, D. Ajithdoss, R. Copin et al., REGN-COV2 antibodies prevent and treat SARSCoV-2 infection in rhesus macaques and hamsters, Science, 370 (2020), 1110-1115. doi: 10.1126/science.abe2402.

[4]

F. Campbell, B. Archer, H. Laurenson-Schafer et al., Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021, Eurosurveillance, 26 (2021), 2100509.

[5]

X. Cao, COVID-19: Immunopathology and its implications for therapy, Nat. Rev. Immunol., 20 (2020), 269-270. 

[6]

P. Chen, A. Nirula, B. Heller et al., SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19, N. Engl. J. Med., 384 (2021), 229–237.

[7]

N. J. Dimmock and A. J. Easton, Defective interfering influenza virus RNAs: Time to reevaluate their clinical potential as broad-spectrum antivirals, J. Virol., 88 (2014), 5217-5227.  doi: 10.1128/JVI.03193-13.

[8]

S. A. Frank, Within-host spatial dynamics of viruses and defective interfering particles, J. Theoret. Biol., 206 (2000), 279-290.  doi: 10.1006/jtbi.2000.2120.

[9]

T. Frensing, F. S. Heldt, A. Pflugmacher et al., Continuous influenza virus production in cell culture shows a periodic accumulation of defective interfering particles, Plos One, 8 (2013), e72288. doi: 10.1371/journal.pone.0072288.

[10]

S. A. GourleyY. Kuang and J. D. Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection, J. Biol. Dyn., 2 (2008), 140-153.  doi: 10.1080/17513750701769873.

[11]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer, New York, 1993. doi: 10.1007/978-1-4612-4342-7.

[12]

A. S. Huang and D. Baltimore, Defective viral particles and viral disease processes, Nature, 226 (1970), 325-327.  doi: 10.1038/226325a0.

[13]

C. Huang, Y. Wang, X. Li et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, 395 (2020), 497–506.

[14]

T. KajiwaraT. Sasaki and Y. Takeuchi, Construction of Lyapunov functionals for delay differential equations in virology and epidemiology, Nonlinear Anal. Real World Appl., 13 (2012), 1802-1826.  doi: 10.1016/j.nonrwa.2011.12.011.

[15]

T. B. Kirkwood and C. R. Bangham, Cycles, chaos, and evolution in virus cultures: A model of defective interfering particles, Proc. Natl. Acad. Sci., 91 (1994), 8685-8689.  doi: 10.1073/pnas.91.18.8685.

[16]

R. L. Kruse, Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China, F1000Research, 9 (2020), 72. 

[17]

J. P. La Salle, The Stability of Dynamical Systems, Society for Industrial and Applied Mathematics, 1976.

[18]

Q. Li, X. Guan, P. Wu et al., Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia, N. Engl. J. Med., 382 (2020), 1199–1207. doi: 10.1056/NEJMoa2001316.

[19]

W. Li, M. J. Moore, N. Vasilieva et al., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature, 426 (2003), 450–454. doi: 10.1038/nature02145.

[20]

X. Li and J. Wei, On the zeros of a fourth degree exponential polynomial with applications to a neural network model with delays, Chaos Solitons Fractals, 26 (2005), 519-526.  doi: 10.1016/j.chaos.2005.01.019.

[21]

C. C. MacDuffee, The Theory of Matrices, Springer, New York, 2012.

[22]

T. B. Manzoni and C. B. López, Defective (interfering) viral genomes re-explored: Impact on antiviral immunity and virus persistence, Future Virol., 13 (2018), 493-503.  doi: 10.2217/fvl-2018-0021.

[23]

A. C. Marriott and N. J. Dimmock, Defective interfering viruses and their potential as antiviral agents, Rev. Med. Virol., 20 (2010), 51-62.  doi: 10.1002/rmv.641.

[24]

G. W. Nelson and A. S.Perelson, Modeling defective interfering virus therapy for AIDS: Conditions for DIV survival, Math. Biosci., 125 (1995), 127-153.  doi: 10.1016/0025-5564(94)00021-Q.

[25]

Y. Pan, J. Du, J. Liu et al., Screening of potent neutralizing antibodies against SARS-CoV-2 using convalescent patients-derived phage-display libraries, Cell Discov., 7 (2021), 1–19.

[26]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo., SIAM Rev., 41 (1999), 3-44.  doi: 10.1137/S0036144598335107.

[27]

U. Rand, S. Y. Kupke, H. Shkarlet et al., Antiviral activity of influenza A virus defective interfering particles against SARS-CoV-2 replication in vitro through stimulation of innate immunity, Cells, 10 (2021), 1756.

[28]

S. Ruan and J. Wei, On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion, Math. Med. Biol., 18 (2001), 41-52.  doi: 10.1093/imammb/18.1.41.

[29]

H. L. Smith, Monotone dynamical systems: An introduction to the theory of competitive and cooperative systems, Bull. Amer. Math. Soc., 33 (1996), 203-209. 

[30]

X. Sun and J. Wei, Stability and bifurcation analysis in a viral infection model with delays, Adv. Differential Equations, 2015 (2015), Article number: 332, 22 pp. doi: 10.1186/s13662-015-0664-7.

[31]

Y. Sun, D. Jain, C. J. Koziol-White et al., Immunostimulatory defective viral genomes from respiratory syncytial virus promote a strong innate antiviral response during infection in mice and humans, Plos Pathog., 11 (2015), e1005122. doi: 10.1371/journal.ppat.1005122.

[32]

E. Szathmáry, Co-operation and defection: Playing the field in virus dynamics, J. Theoret. Biol., 165 (1993), 341-356. 

[33]

F. Tapia, T. Laske, M. A. Wasik et al., Production of defective interfering particles of influenza a virus in parallel continuous cultures at two residence times-insights from qPCR measurements and viral dynamics modeling, Front. Bioeng. Biotech., 7 (2019), 275. doi: 10.3389/fbioe.2019.00275.

[34]

Y. TianY. Bai and P. Yu, Impact of delay on HIV-1 dynamics of fighting a virus with another virus, Math. Biosci. Eng., 11 (2014), 1181-1198.  doi: 10.3934/mbe.2014.11.1181.

[35]

M. N. Tortorici and D. Veesler, Structural insights into coronavirus entry, Adv. Virus. Res., 105 (2019), 93-116.  doi: 10.1016/bs.aivir.2019.08.002.

[36]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6.

[37]

M. Vignuzzi and C. B. López, Defective viral genomes are key drivers of the virus–host interaction, Nat. Microbiol., 4 (2019), 1075-1087.  doi: 10.1038/s41564-019-0465-y.

[38]

D. Wang, B. Hu, C. Hu et al., Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China, JAMA, 323 (2020), 1061–1069.

[39]

D. Wodarz, Hepatitis C virus dynamics and pathology: The role of CTL and antibody responses, J. Gen. Virol., 84 (2003), 1743-1750.  doi: 10.1099/vir.0.19118-0.

[40]

Y. WuC. Chen and Y. Chan, The outbreak of COVID-19: An overview, J. Chin. Med. Assoc., 83 (2020), 217-220.  doi: 10.1097/JCMA.0000000000000270.

[41]

S. Yao, A. Narayanan, S. A. Majowicz, J. Jose and M. Archetti, A synthetic defective interfering SARS-CoV-2, PeerJ, 9 (2021), e11686.

[42]

M. Zhang, J. Xiao, A. Deng et al., Transmission dynamics of an outbreak of the COVID-19 delta variant B. 1.617. 2-Guangdong Province, China, May–June 2021, CCDC Weekly, 3 (2021), 584–586.

[43]

T. ZhangY. SongZ. Jiang and J. Wang, Dynamical analysis of a delayed HIV virus dynamic model with cell-to-cell transmission and apoptosis of bystander cells, Complexity, 2 (2020), 126-144. 

[44]

H. Zhao, K. K. To, H. Chu et al., Dual-functional peptide with defective interfering genes effectively protects mice against avian and seasonal influenza, Nat. Commun., 9 (2018), 1–14. doi: 10.1038/s41467-018-04792-7.

[45]

X. ZhouX. Song and X. Shi, A differential equation model of HIV infection of CD4+ T-cells with cure rate, J. Math. Anal. Appl., 342 (2008), 1342-1355.  doi: 10.1016/j.jmaa.2008.01.008.

[46]

H. Zhu and X. Zou, Dynamics of HIV-1 infection model with cell-mediated immune response and intracellular delay, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 511-524.  doi: 10.3934/dcdsb.2009.12.511.

show all references

References:
[1]

D. Adam, What scientists know about new, fast-spreading coronavirus variants, Nature, 594 (2021), 19-20. 

[2]

C. M. Bangham and T. B. L. Kirkwood, Defective interfering particles: Effects in modulating virus growth and persistence, Virology, 179 (1990), 821-826.  doi: 10.1016/0042-6822(90)90150-P.

[3]

A. Baum, D. Ajithdoss, R. Copin et al., REGN-COV2 antibodies prevent and treat SARSCoV-2 infection in rhesus macaques and hamsters, Science, 370 (2020), 1110-1115. doi: 10.1126/science.abe2402.

[4]

F. Campbell, B. Archer, H. Laurenson-Schafer et al., Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021, Eurosurveillance, 26 (2021), 2100509.

[5]

X. Cao, COVID-19: Immunopathology and its implications for therapy, Nat. Rev. Immunol., 20 (2020), 269-270. 

[6]

P. Chen, A. Nirula, B. Heller et al., SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19, N. Engl. J. Med., 384 (2021), 229–237.

[7]

N. J. Dimmock and A. J. Easton, Defective interfering influenza virus RNAs: Time to reevaluate their clinical potential as broad-spectrum antivirals, J. Virol., 88 (2014), 5217-5227.  doi: 10.1128/JVI.03193-13.

[8]

S. A. Frank, Within-host spatial dynamics of viruses and defective interfering particles, J. Theoret. Biol., 206 (2000), 279-290.  doi: 10.1006/jtbi.2000.2120.

[9]

T. Frensing, F. S. Heldt, A. Pflugmacher et al., Continuous influenza virus production in cell culture shows a periodic accumulation of defective interfering particles, Plos One, 8 (2013), e72288. doi: 10.1371/journal.pone.0072288.

[10]

S. A. GourleyY. Kuang and J. D. Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection, J. Biol. Dyn., 2 (2008), 140-153.  doi: 10.1080/17513750701769873.

[11]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer, New York, 1993. doi: 10.1007/978-1-4612-4342-7.

[12]

A. S. Huang and D. Baltimore, Defective viral particles and viral disease processes, Nature, 226 (1970), 325-327.  doi: 10.1038/226325a0.

[13]

C. Huang, Y. Wang, X. Li et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, 395 (2020), 497–506.

[14]

T. KajiwaraT. Sasaki and Y. Takeuchi, Construction of Lyapunov functionals for delay differential equations in virology and epidemiology, Nonlinear Anal. Real World Appl., 13 (2012), 1802-1826.  doi: 10.1016/j.nonrwa.2011.12.011.

[15]

T. B. Kirkwood and C. R. Bangham, Cycles, chaos, and evolution in virus cultures: A model of defective interfering particles, Proc. Natl. Acad. Sci., 91 (1994), 8685-8689.  doi: 10.1073/pnas.91.18.8685.

[16]

R. L. Kruse, Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China, F1000Research, 9 (2020), 72. 

[17]

J. P. La Salle, The Stability of Dynamical Systems, Society for Industrial and Applied Mathematics, 1976.

[18]

Q. Li, X. Guan, P. Wu et al., Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia, N. Engl. J. Med., 382 (2020), 1199–1207. doi: 10.1056/NEJMoa2001316.

[19]

W. Li, M. J. Moore, N. Vasilieva et al., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature, 426 (2003), 450–454. doi: 10.1038/nature02145.

[20]

X. Li and J. Wei, On the zeros of a fourth degree exponential polynomial with applications to a neural network model with delays, Chaos Solitons Fractals, 26 (2005), 519-526.  doi: 10.1016/j.chaos.2005.01.019.

[21]

C. C. MacDuffee, The Theory of Matrices, Springer, New York, 2012.

[22]

T. B. Manzoni and C. B. López, Defective (interfering) viral genomes re-explored: Impact on antiviral immunity and virus persistence, Future Virol., 13 (2018), 493-503.  doi: 10.2217/fvl-2018-0021.

[23]

A. C. Marriott and N. J. Dimmock, Defective interfering viruses and their potential as antiviral agents, Rev. Med. Virol., 20 (2010), 51-62.  doi: 10.1002/rmv.641.

[24]

G. W. Nelson and A. S.Perelson, Modeling defective interfering virus therapy for AIDS: Conditions for DIV survival, Math. Biosci., 125 (1995), 127-153.  doi: 10.1016/0025-5564(94)00021-Q.

[25]

Y. Pan, J. Du, J. Liu et al., Screening of potent neutralizing antibodies against SARS-CoV-2 using convalescent patients-derived phage-display libraries, Cell Discov., 7 (2021), 1–19.

[26]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo., SIAM Rev., 41 (1999), 3-44.  doi: 10.1137/S0036144598335107.

[27]

U. Rand, S. Y. Kupke, H. Shkarlet et al., Antiviral activity of influenza A virus defective interfering particles against SARS-CoV-2 replication in vitro through stimulation of innate immunity, Cells, 10 (2021), 1756.

[28]

S. Ruan and J. Wei, On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion, Math. Med. Biol., 18 (2001), 41-52.  doi: 10.1093/imammb/18.1.41.

[29]

H. L. Smith, Monotone dynamical systems: An introduction to the theory of competitive and cooperative systems, Bull. Amer. Math. Soc., 33 (1996), 203-209. 

[30]

X. Sun and J. Wei, Stability and bifurcation analysis in a viral infection model with delays, Adv. Differential Equations, 2015 (2015), Article number: 332, 22 pp. doi: 10.1186/s13662-015-0664-7.

[31]

Y. Sun, D. Jain, C. J. Koziol-White et al., Immunostimulatory defective viral genomes from respiratory syncytial virus promote a strong innate antiviral response during infection in mice and humans, Plos Pathog., 11 (2015), e1005122. doi: 10.1371/journal.ppat.1005122.

[32]

E. Szathmáry, Co-operation and defection: Playing the field in virus dynamics, J. Theoret. Biol., 165 (1993), 341-356. 

[33]

F. Tapia, T. Laske, M. A. Wasik et al., Production of defective interfering particles of influenza a virus in parallel continuous cultures at two residence times-insights from qPCR measurements and viral dynamics modeling, Front. Bioeng. Biotech., 7 (2019), 275. doi: 10.3389/fbioe.2019.00275.

[34]

Y. TianY. Bai and P. Yu, Impact of delay on HIV-1 dynamics of fighting a virus with another virus, Math. Biosci. Eng., 11 (2014), 1181-1198.  doi: 10.3934/mbe.2014.11.1181.

[35]

M. N. Tortorici and D. Veesler, Structural insights into coronavirus entry, Adv. Virus. Res., 105 (2019), 93-116.  doi: 10.1016/bs.aivir.2019.08.002.

[36]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6.

[37]

M. Vignuzzi and C. B. López, Defective viral genomes are key drivers of the virus–host interaction, Nat. Microbiol., 4 (2019), 1075-1087.  doi: 10.1038/s41564-019-0465-y.

[38]

D. Wang, B. Hu, C. Hu et al., Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China, JAMA, 323 (2020), 1061–1069.

[39]

D. Wodarz, Hepatitis C virus dynamics and pathology: The role of CTL and antibody responses, J. Gen. Virol., 84 (2003), 1743-1750.  doi: 10.1099/vir.0.19118-0.

[40]

Y. WuC. Chen and Y. Chan, The outbreak of COVID-19: An overview, J. Chin. Med. Assoc., 83 (2020), 217-220.  doi: 10.1097/JCMA.0000000000000270.

[41]

S. Yao, A. Narayanan, S. A. Majowicz, J. Jose and M. Archetti, A synthetic defective interfering SARS-CoV-2, PeerJ, 9 (2021), e11686.

[42]

M. Zhang, J. Xiao, A. Deng et al., Transmission dynamics of an outbreak of the COVID-19 delta variant B. 1.617. 2-Guangdong Province, China, May–June 2021, CCDC Weekly, 3 (2021), 584–586.

[43]

T. ZhangY. SongZ. Jiang and J. Wang, Dynamical analysis of a delayed HIV virus dynamic model with cell-to-cell transmission and apoptosis of bystander cells, Complexity, 2 (2020), 126-144. 

[44]

H. Zhao, K. K. To, H. Chu et al., Dual-functional peptide with defective interfering genes effectively protects mice against avian and seasonal influenza, Nat. Commun., 9 (2018), 1–14. doi: 10.1038/s41467-018-04792-7.

[45]

X. ZhouX. Song and X. Shi, A differential equation model of HIV infection of CD4+ T-cells with cure rate, J. Math. Anal. Appl., 342 (2008), 1342-1355.  doi: 10.1016/j.jmaa.2008.01.008.

[46]

H. Zhu and X. Zou, Dynamics of HIV-1 infection model with cell-mediated immune response and intracellular delay, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 511-524.  doi: 10.3934/dcdsb.2009.12.511.

Figure 1.  Artificial antibodies block SARS-CoV-2 from infecting cells
Figure 2.  Pathogen viral particles $ V $ infect normal cells $ T $ producing infected cells $ I $; $ W $ can produce in infected cells; artificial antibodies $ F $ bind to virus, infected cells are able to produce virus $ V $ and defective interfering particles $ W $
Figure 3.  When $ \mathcal{R}_0<1 $, $ \tau = 1 $, the disease-free equilibrium $ E_0 $ is globally asymptotically stable
Figure 4.  When $ R_1<1<\mathcal{R}_0 $, $ \tau = 0.8, 1,1.5 $, the infectious equilibrium without defective interfering particles $ E_1 $ is globally asymptotically stable
Figure 5.  When $ 1<R_1<\mathcal{R}_0 $, $ \tau = 1.6 $, the infectious equilibrium with defective intefering particles $ E_2 $ is locally asymptotically stable
Figure 6.  When $ 1<R_1<\mathcal{R}_0 $, $ \tau = 1.6 $, the infectious equilibrium with defective interfering particles $ E_2 $ showing bifurcation to a stable limit cycle
[1]

Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID-19: A case study of India, Brazil and Peru. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021170

[2]

Jorge Rebaza. On a model of COVID-19 dynamics. Electronic Research Archive, 2021, 29 (2) : 2129-2140. doi: 10.3934/era.2020108

[3]

Hailiang Liu, Xuping Tian. Data-driven optimal control of a seir model for COVID-19. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021093

[4]

Qi Luo, Ryan Weightman, Sean T. McQuade, Mateo Díaz, Emmanuel Trélat, William Barbour, Dan Work, Samitha Samaranayake, Benedetto Piccoli. Optimization of vaccination for COVID-19 in the midst of a pandemic. Networks and Heterogeneous Media, 2022, 17 (3) : 443-466. doi: 10.3934/nhm.2022016

[5]

Nicola Bellomo, Diletta Burini, Nisrine Outada. Multiscale models of Covid-19 with mutations and variants. Networks and Heterogeneous Media, 2022, 17 (3) : 293-310. doi: 10.3934/nhm.2022008

[6]

Tailei Zhang, Zhimin Li. Analysis of COVID-19 epidemic transmission trend based on a time-delayed dynamic model. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021088

[7]

Tao Zheng, Yantao Luo, Xinran Zhou, Long Zhang, Zhidong Teng. Spatial dynamic analysis for COVID-19 epidemic model with diffusion and Beddington-DeAngelis type incidence. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021154

[8]

Emiliano Alvarez, Juan Gabriel Brida, Lucía Rosich, Erick Limas. Analysis of communities of countries with similar dynamics of the COVID-19 pandemic evolution. Journal of Dynamics and Games, 2022, 9 (1) : 75-96. doi: 10.3934/jdg.2021026

[9]

Haitao Song, Fang Liu, Feng Li, Xiaochun Cao, Hao Wang, Zhongwei Jia, Huaiping Zhu, Michael Y. Li, Wei Lin, Hong Yang, Jianghong Hu, Zhen Jin. Modeling the second outbreak of COVID-19 with isolation and contact tracing. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021294

[10]

Gabriel Illanes, Ernesto Mordecki, Andrés Sosa. On the impact of the Covid-19 health crisis on GDP forecasting: An empirical approach. Journal of Dynamics and Games, 2022  doi: 10.3934/jdg.2022008

[11]

Monique Chyba, Rinaldo M. Colombo, Mauro Garavello, Benedetto Piccoli. Advanced mathematical methodologies to contrast COVID-19 pandemic. Networks and Heterogeneous Media, 2022, 17 (3) : i-ii. doi: 10.3934/nhm.2022020

[12]

Amin Reza Kalantari Khalil Abad, Farnaz Barzinpour, Seyed Hamid Reza Pasandideh. A novel separate chance-constrained programming model to design a sustainable medical ventilator supply chain network during the Covid-19 pandemic. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2021234

[13]

R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure and Applied Analysis, 2003, 2 (2) : 147-158. doi: 10.3934/cpaa.2003.2.147

[14]

Sun Yi, Patrick W. Nelson, A. Galip Ulsoy. Delay differential equations via the matrix lambert w function and bifurcation analysis: application to machine tool chatter. Mathematical Biosciences & Engineering, 2007, 4 (2) : 355-368. doi: 10.3934/mbe.2007.4.355

[15]

Janusz Mierczyński, Sylvia Novo, Rafael Obaya. Lyapunov exponents and Oseledets decomposition in random dynamical systems generated by systems of delay differential equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2235-2255. doi: 10.3934/cpaa.2020098

[16]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics and Games, 2021, 8 (3) : 167-186. doi: 10.3934/jdg.2021004

[17]

Kaitlin Riegel, Tanya Evans. Predicting how a disrupted semester during the COVID-19 pandemic impacted student learning. STEM Education, 2022, 2 (2) : 140-156. doi: 10.3934/steme.2022010

[18]

Yongtao Peng, Dan Xu, Eleonora Veglianti, Elisabetta Magnaghi. A product service supply chain network equilibrium considering risk management in the context of COVID-19 pandemic. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022094

[19]

Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026

[20]

Timothy C. Reluga, Jan Medlock, Alison Galvani. The discounted reproductive number for epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (2) : 377-393. doi: 10.3934/mbe.2009.6.377

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (339)
  • HTML views (189)
  • Cited by (0)

Other articles
by authors

[Back to Top]