• Previous Article
    Chaotic threshold of a class of hybrid piecewise-smooth system by an impulsive effect via Melnikov-type function
  • DCDS-B Home
  • This Issue
  • Next Article
    Global solvability to a singular chemotaxis-consumption model with fast and slow diffusion and logistic source
doi: 10.3934/dcdsb.2021288
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Limiting dynamics for stochastic nonclassical diffusion equations

School of Mathematics and Statistics, and Center for Mathematics, and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024, China

Received  June 2021 Revised  October 2021 Early access December 2021

Fund Project: Peng Gao is supported by the Fundamental Research Funds for the Central Universities (2412020FZ022)

In this paper, we are concerned with the dynamical behavior of the stochastic nonclassical parabolic equation, more precisely, it is shown that the inviscid limits of the stochastic nonclassical diffusion equations reduces to the stochastic heat equations. The key points in the proof of our convergence results are establishing some uniform estimates and the regularity theory for the solutions of the stochastic nonclassical diffusion equations which are independent of the parameter. Based on the uniform estimates, the tightness of distributions of the solutions can be obtained.

Citation: Peng Gao. Limiting dynamics for stochastic nonclassical diffusion equations. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021288
References:
[1]

E. C. Aifantis, On the problem of diffusion in solids, Acta Mechanica, 37 (1980), 265-296.  doi: 10.1007/BF01202949.  Google Scholar

[2]

C. T. Anh and T. Q. Bao, Pullback attractors for a class of non-autonomous nonclassical diffusion equations, Nonlinear Anal., 73 (2010), 399-412.  doi: 10.1016/j.na.2010.03.031.  Google Scholar

[3]

L. Bai and F. Zhang, Existence of random attractors for 2D-stochastic nonclassical diffusion equations on unbounded domains, Results Math., 69 (2016), 129-160.  doi: 10.1007/s00025-015-0505-8.  Google Scholar

[4]

A. Bensoussan, Stochastic Navier-Stokes equations, Acta Appl. Math., 38 (1995), 267-304.  doi: 10.1007/BF00996149.  Google Scholar

[5]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[6]

S. Cerrai and M. Freidlin, On the Smoluchowski-Kramers approximation for a system with an infinite number of degrees of freedom, Probab. Theory Related Fields, 135 (2006), 363-394.  doi: 10.1007/s00440-005-0465-0.  Google Scholar

[7]

S. Cerrai and M. Freidlin, Smoluchowski-Kramers approximation for a general class of SPDEs, J. Evol. Equ., 6 (2006), 657-689.  doi: 10.1007/s00028-006-0281-8.  Google Scholar

[8]

S. Cerrai and M. Salins, On the Smoluchowski-Kramers approximation for a system with infinite degrees of freedom exposed to a magnetic field, Stochastic Process. Appl., 127 (2017), 273-303.  doi: 10.1016/j.spa.2016.06.008.  Google Scholar

[9]

S. Cerrai and M. Salins, Smoluchowski-Kramers approximation and large deviations for infinite-dimensional nongradient systems with applications to the exit problem, Ann. Probab., 44 (2016), 2591-2642.  doi: 10.1214/15-AOP1029.  Google Scholar

[10]

S. Cerrai and M. Salins, Smoluchowski-Kramers approximation and large deviations for infinite dimensional gradient systems, Asymptot. Anal., 88 (2014), 201-215.  doi: 10.3233/ASY-141220.  Google Scholar

[11] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, 2$^{nd}$ edition, Cambridge University Press, 2014.  doi: 10.1017/CBO9781107295513.  Google Scholar
[12]

A. DebusscheN. Glatt-Holtz and R. Temam, Local martingale and pathwise solutions for an abstract fluids model, Phys. D, 240 (2011), 1123-1144.  doi: 10.1016/j.physd.2011.03.009.  Google Scholar

[13]

G. DeugouéP. A. Razafimandimby and M. Sango, On the 3-D stochastic magnetohydrodynamic-$\alpha$ model, Stochastic Process. Appl., 122 (2012), 2211-2248.  doi: 10.1016/j.spa.2012.03.002.  Google Scholar

[14]

G. Deugoue and M. Sango, Weak solutions to stochastic 3D Navier-Stokes-$\alpha$ model of turbulence: $\alpha$-asymptotic behavior, J. Math. Anal. Appl., 384 (2011), 49-62.  doi: 10.1016/j.jmaa.2010.10.048.  Google Scholar

[15]

P. Gao, Carleman estimate and unique continuation property for the linear stochastic Korteweg-de Vries equation, Bull. Aust. Math. Soc., 90 (2014), 283-294.  doi: 10.1017/S0004972714000276.  Google Scholar

[16]

P. Gao, Global Carleman estimates for linear stochastic Kawahara equation and their applications, Math. Control Signals Systems, 28 (2016), 1-22.  doi: 10.1007/s00498-016-0173-6.  Google Scholar

[17]

I. Gyöngy and N. Krylov, Existence of strong solutions for Itö's stochastic equations via approximations, Probab. Theory Related Fields, 105 (1996), 143-158.  doi: 10.1007/BF01203833.  Google Scholar

[18]

J. U. Kim, Approximate controllability of a stochastic wave equation, Appl. Math. Optim., 49 (2004), 81-98.  doi: 10.1007/s00245-003-0781-7.  Google Scholar

[19]

J. U. Kim, Periodic and invariant measures for stochastic wave equations, Electron. J. Differential Equations, (2004), 1–30.  Google Scholar

[20]

Y. Lv and A. J. Roberts, Averaging approximation to singularly perturbed nonlinear stochastic wave equations, J. Math. Phys., 53 (2012), 062702.  doi: 10.1063/1.4726175.  Google Scholar

[21]

Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, J. Differential Equations, 244 (2008), 1-23.  doi: 10.1016/j.jde.2007.10.009.  Google Scholar

[22]

J. C. Peter and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19 (1968), 614-627.   Google Scholar

[23]

D. Pham and P. Nguyen, Stochastic systems of diffusion equations with polynomial reaction terms, Asymptotic Anal., 99 (2016), 125-161.  doi: 10.3233/ASY-161378.  Google Scholar

[24]

P. A. Razafimandimby and M. Sango, Weak solutions of a stochastic model for two-dimensional second grade fluids, Bound. Value Probl., 2010 (2010), 1-47.  doi: 10.1155/2010/636140.  Google Scholar

[25]

M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, Springer Science & Business Media, 2006. Google Scholar

[26]

M. Sango, Magnetohydrodynamic turbulent flows: Existence results, Physica D: Nonlinear Phenomena, 239 (2010), 912-923.  doi: 10.1016/j.physd.2010.01.009.  Google Scholar

[27]

M. Sango, Splitting-up scheme for nonlinear stochastic hyperbolic equations, Forum Math., 25 (2013), 931-965.  doi: 10.1515/form.2011.138.  Google Scholar

[28]

J. Simon, Compact sets in the space $L^{p}(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[29]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, , Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[30]

T. W. Ting, Certain non-steady flows of second-order fluids, Arch. Rational Mech. Anal., 14 (1963), 1-26.  doi: 10.1007/BF00250690.  Google Scholar

[31]

C. Truesdell and W. Noll, The Nonlinear Field Theories of Mechanics, Encyclopedia of Physics, , Springer, Berlin, 1955. Google Scholar

[32]

B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains, J. Differential Equations, 246 (2009), 2506-2537.  doi: 10.1016/j.jde.2008.10.012.  Google Scholar

[33]

W. Wang and Y. Lv, Limit behavior of nonlinear stochastic wave equations with singular perturbation, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 175-193.  doi: 10.3934/dcdsb.2010.13.175.  Google Scholar

[34]

E. Waymire and J. Duan, Probability and Partial Differential Equations in Modern Applied Mathematics, , Springer-Verlag, New York, 2005. doi: 10.1007/978-0-387-29371-4.  Google Scholar

[35]

F. H. Zhang and W. Han, Pullback attractors for nonclassical diffusion delay equations on unbounded domains with non-autonomous deterministic and stochastic forcing terms, Electron. J. Differential Equations, 2016 (2016), Paper No. 139, 28 pp.  Google Scholar

[36]

W. Zhao and S. Song, Dynamics of stochastic nonclassical diffusion equations on unbounded domains, Electron. J. Differential Equations, 282 (2015), 1-22.   Google Scholar

show all references

References:
[1]

E. C. Aifantis, On the problem of diffusion in solids, Acta Mechanica, 37 (1980), 265-296.  doi: 10.1007/BF01202949.  Google Scholar

[2]

C. T. Anh and T. Q. Bao, Pullback attractors for a class of non-autonomous nonclassical diffusion equations, Nonlinear Anal., 73 (2010), 399-412.  doi: 10.1016/j.na.2010.03.031.  Google Scholar

[3]

L. Bai and F. Zhang, Existence of random attractors for 2D-stochastic nonclassical diffusion equations on unbounded domains, Results Math., 69 (2016), 129-160.  doi: 10.1007/s00025-015-0505-8.  Google Scholar

[4]

A. Bensoussan, Stochastic Navier-Stokes equations, Acta Appl. Math., 38 (1995), 267-304.  doi: 10.1007/BF00996149.  Google Scholar

[5]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[6]

S. Cerrai and M. Freidlin, On the Smoluchowski-Kramers approximation for a system with an infinite number of degrees of freedom, Probab. Theory Related Fields, 135 (2006), 363-394.  doi: 10.1007/s00440-005-0465-0.  Google Scholar

[7]

S. Cerrai and M. Freidlin, Smoluchowski-Kramers approximation for a general class of SPDEs, J. Evol. Equ., 6 (2006), 657-689.  doi: 10.1007/s00028-006-0281-8.  Google Scholar

[8]

S. Cerrai and M. Salins, On the Smoluchowski-Kramers approximation for a system with infinite degrees of freedom exposed to a magnetic field, Stochastic Process. Appl., 127 (2017), 273-303.  doi: 10.1016/j.spa.2016.06.008.  Google Scholar

[9]

S. Cerrai and M. Salins, Smoluchowski-Kramers approximation and large deviations for infinite-dimensional nongradient systems with applications to the exit problem, Ann. Probab., 44 (2016), 2591-2642.  doi: 10.1214/15-AOP1029.  Google Scholar

[10]

S. Cerrai and M. Salins, Smoluchowski-Kramers approximation and large deviations for infinite dimensional gradient systems, Asymptot. Anal., 88 (2014), 201-215.  doi: 10.3233/ASY-141220.  Google Scholar

[11] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, 2$^{nd}$ edition, Cambridge University Press, 2014.  doi: 10.1017/CBO9781107295513.  Google Scholar
[12]

A. DebusscheN. Glatt-Holtz and R. Temam, Local martingale and pathwise solutions for an abstract fluids model, Phys. D, 240 (2011), 1123-1144.  doi: 10.1016/j.physd.2011.03.009.  Google Scholar

[13]

G. DeugouéP. A. Razafimandimby and M. Sango, On the 3-D stochastic magnetohydrodynamic-$\alpha$ model, Stochastic Process. Appl., 122 (2012), 2211-2248.  doi: 10.1016/j.spa.2012.03.002.  Google Scholar

[14]

G. Deugoue and M. Sango, Weak solutions to stochastic 3D Navier-Stokes-$\alpha$ model of turbulence: $\alpha$-asymptotic behavior, J. Math. Anal. Appl., 384 (2011), 49-62.  doi: 10.1016/j.jmaa.2010.10.048.  Google Scholar

[15]

P. Gao, Carleman estimate and unique continuation property for the linear stochastic Korteweg-de Vries equation, Bull. Aust. Math. Soc., 90 (2014), 283-294.  doi: 10.1017/S0004972714000276.  Google Scholar

[16]

P. Gao, Global Carleman estimates for linear stochastic Kawahara equation and their applications, Math. Control Signals Systems, 28 (2016), 1-22.  doi: 10.1007/s00498-016-0173-6.  Google Scholar

[17]

I. Gyöngy and N. Krylov, Existence of strong solutions for Itö's stochastic equations via approximations, Probab. Theory Related Fields, 105 (1996), 143-158.  doi: 10.1007/BF01203833.  Google Scholar

[18]

J. U. Kim, Approximate controllability of a stochastic wave equation, Appl. Math. Optim., 49 (2004), 81-98.  doi: 10.1007/s00245-003-0781-7.  Google Scholar

[19]

J. U. Kim, Periodic and invariant measures for stochastic wave equations, Electron. J. Differential Equations, (2004), 1–30.  Google Scholar

[20]

Y. Lv and A. J. Roberts, Averaging approximation to singularly perturbed nonlinear stochastic wave equations, J. Math. Phys., 53 (2012), 062702.  doi: 10.1063/1.4726175.  Google Scholar

[21]

Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, J. Differential Equations, 244 (2008), 1-23.  doi: 10.1016/j.jde.2007.10.009.  Google Scholar

[22]

J. C. Peter and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19 (1968), 614-627.   Google Scholar

[23]

D. Pham and P. Nguyen, Stochastic systems of diffusion equations with polynomial reaction terms, Asymptotic Anal., 99 (2016), 125-161.  doi: 10.3233/ASY-161378.  Google Scholar

[24]

P. A. Razafimandimby and M. Sango, Weak solutions of a stochastic model for two-dimensional second grade fluids, Bound. Value Probl., 2010 (2010), 1-47.  doi: 10.1155/2010/636140.  Google Scholar

[25]

M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, Springer Science & Business Media, 2006. Google Scholar

[26]

M. Sango, Magnetohydrodynamic turbulent flows: Existence results, Physica D: Nonlinear Phenomena, 239 (2010), 912-923.  doi: 10.1016/j.physd.2010.01.009.  Google Scholar

[27]

M. Sango, Splitting-up scheme for nonlinear stochastic hyperbolic equations, Forum Math., 25 (2013), 931-965.  doi: 10.1515/form.2011.138.  Google Scholar

[28]

J. Simon, Compact sets in the space $L^{p}(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[29]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, , Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[30]

T. W. Ting, Certain non-steady flows of second-order fluids, Arch. Rational Mech. Anal., 14 (1963), 1-26.  doi: 10.1007/BF00250690.  Google Scholar

[31]

C. Truesdell and W. Noll, The Nonlinear Field Theories of Mechanics, Encyclopedia of Physics, , Springer, Berlin, 1955. Google Scholar

[32]

B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains, J. Differential Equations, 246 (2009), 2506-2537.  doi: 10.1016/j.jde.2008.10.012.  Google Scholar

[33]

W. Wang and Y. Lv, Limit behavior of nonlinear stochastic wave equations with singular perturbation, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 175-193.  doi: 10.3934/dcdsb.2010.13.175.  Google Scholar

[34]

E. Waymire and J. Duan, Probability and Partial Differential Equations in Modern Applied Mathematics, , Springer-Verlag, New York, 2005. doi: 10.1007/978-0-387-29371-4.  Google Scholar

[35]

F. H. Zhang and W. Han, Pullback attractors for nonclassical diffusion delay equations on unbounded domains with non-autonomous deterministic and stochastic forcing terms, Electron. J. Differential Equations, 2016 (2016), Paper No. 139, 28 pp.  Google Scholar

[36]

W. Zhao and S. Song, Dynamics of stochastic nonclassical diffusion equations on unbounded domains, Electron. J. Differential Equations, 282 (2015), 1-22.   Google Scholar

[1]

Annie Millet, Svetlana Roudenko. Generalized KdV equation subject to a stochastic perturbation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1177-1198. doi: 10.3934/dcdsb.2018147

[2]

Yangyang Shi, Hongjun Gao. Homogenization for stochastic reaction-diffusion equations with singular perturbation term. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021137

[3]

Yueling Li, Yingchao Xie, Xicheng Zhang. Large deviation principle for stochastic heat equation with memory. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5221-5237. doi: 10.3934/dcds.2015.35.5221

[4]

Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations & Control Theory, 2014, 3 (1) : 35-58. doi: 10.3934/eect.2014.3.35

[5]

Xiaolei Dong, Yuming Qin. Strong pullback attractors for a nonclassical diffusion equation. Discrete & Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021313

[6]

Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895

[7]

Peng Gao. Unique continuation property for stochastic nonclassical diffusion equations and stochastic linearized Benjamin-Bona-Mahony equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2493-2510. doi: 10.3934/dcdsb.2018262

[8]

Michael Scheutzow. Exponential growth rate for a singular linear stochastic delay differential equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1683-1696. doi: 10.3934/dcdsb.2013.18.1683

[9]

Perla El Kettani, Danielle Hilhorst, Kai Lee. A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5615-5648. doi: 10.3934/dcds.2018246

[10]

Wei Wang, Yan Lv. Limit behavior of nonlinear stochastic wave equations with singular perturbation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 175-193. doi: 10.3934/dcdsb.2010.13.175

[11]

Nathan Glatt-Holtz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1241-1268. doi: 10.3934/dcds.2010.26.1241

[12]

Esther S. Daus, Shi Jin, Liu Liu. Spectral convergence of the stochastic galerkin approximation to the boltzmann equation with multiple scales and large random perturbation in the collision kernel. Kinetic & Related Models, 2019, 12 (4) : 909-922. doi: 10.3934/krm.2019034

[13]

D. Blömker, S. Maier-Paape, G. Schneider. The stochastic Landau equation as an amplitude equation. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 527-541. doi: 10.3934/dcdsb.2001.1.527

[14]

Chan Liu, Jin Wen, Zhidong Zhang. Reconstruction of the time-dependent source term in a stochastic fractional diffusion equation. Inverse Problems & Imaging, 2020, 14 (6) : 1001-1024. doi: 10.3934/ipi.2020053

[15]

Hongyong Cui, Yangrong Li. Asymptotic $ H^2$ regularity of a stochastic reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021290

[16]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[17]

Shuli Chen, Zewen Wang, Guolin Chen. Cauchy problem of non-homogenous stochastic heat equation and application to inverse random source problem. Inverse Problems & Imaging, 2021, 15 (4) : 619-639. doi: 10.3934/ipi.2021008

[18]

Kin Ming Hui. Collasping behaviour of a singular diffusion equation. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 2165-2185. doi: 10.3934/dcds.2012.32.2165

[19]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[20]

Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (73)
  • HTML views (58)
  • Cited by (0)

Other articles
by authors

[Back to Top]