doi: 10.3934/dcdsb.2021290
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Asymptotic $ H^2$ regularity of a stochastic reaction-diffusion equation

1. 

School of Mathematics and Statistics, and Hubei Key Laboratory of Engineering Modeling and Science Computing, Huazhong University of Science & Technology, Wuhan 430074, China

2. 

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

* Corresponding author

Received  March 2021 Revised  September 2021 Early access December 2021

In this paper we study the asymptotic dynamics for the weak solutions of the following stochastic reaction-diffusion equation defined on a bounded smooth domain
$ {\mathcal{O}} \subset {\mathbb{R}}^N $
,
$ N \leqslant 3 $
, with Dirichlet boundary condition:
$ \begin{equation} \nonumber\begin{aligned} { {{\rm{d}}} u } +(-\Delta u + u ^3- \beta u ) {{\rm{d}}} t = g(x) {{\rm{d}}} t+h(x) {{\rm{d}}} W , \quad u|_{t = 0} = u_0\in H: = L^2( {\mathcal{O}}), \end{aligned} \end{equation} $
where
$ \beta>0 $
,
$ g\in H $
, and
$ W $
a scalar and two-sided Wiener process with a regular perturbation intensity
$ h $
. We first construct an
$ H^2 $
tempered random absorbing set of the system, and then prove an
$ (H,H^2) $
-smoothing property and conclude that the random attractor of the system is in fact a finite-dimensional tempered random set in
$ H^2 $
and pullback attracts tempered random sets in
$ H $
under the topology of
$ H^2 $
. The main technique we shall employ is comparing the regularity of the stochastic equation to that of the corresponding deterministic equation for which the asymptotic
$ H^2 $
regularity is already known.
Citation: Hongyong Cui, Yangrong Li. Asymptotic $ H^2$ regularity of a stochastic reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021290
References:
[1] L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998.  doi: 10.1007/978-3-662-12878-7.  Google Scholar
[2]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction–diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[3]

T. CaraballoH. CrauelJ. A. Langa and J. C. Robinson, The effect of noise on the Chafee-Infante equation: A nonlinear case study, Proc. Amer. Math. Soc., 135 (2007), 373-382.  doi: 10.1090/S0002-9939-06-08593-5.  Google Scholar

[4]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[5]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[6]

H. Cui, A. C. Cunha and J. A. Langa, Finite-dimensionality of tempered random uniform attractors, Journal of Nonlinear Science, in press. Google Scholar

[7]

H. CuiJ. A. Langa and Y. Li, Regularity and structure of pullback attractors for reaction-diffusion type systems without uniqueness, Nonlinear Anal., 140 (2016), 208-235.  doi: 10.1016/j.na.2016.03.012.  Google Scholar

[8]

H. CuiJ. A. Langa and Y. Li, Measurability of random attractors for quasi strong-to-weak continuous random dynamical systems, J. Dynam. Differential Equations, 30 (2018), 1873-1898.  doi: 10.1007/s10884-017-9617-z.  Google Scholar

[9]

H. CuiY. Li and J. Yin, Long time behavior of stochastic MHD equations perturbed by multiplicative noises, J. Appl. Anal. Comput., 6 (2016), 1081-1104.  doi: 10.11948/2016071.  Google Scholar

[10]

H. CuiY. Li and J. Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Anal., 128 (2015), 303-324.  doi: 10.1016/j.na.2015.08.009.  Google Scholar

[11]

A. Debussche, On the finite dimensionality of random attractors, Stochastic Anal. Appl., 15 (1997), 473-491.  doi: 10.1080/07362999708809490.  Google Scholar

[12]

J. A. Langa and J. C. Robinson, Fractal dimension of a random invariant set, J. Math. Pures Appl., 85 (2006), 269-294.  doi: 10.1016/j.matpur.2005.08.001.  Google Scholar

[13]

Y. LiA. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differential Equations, 258 (2015), 504-534.  doi: 10.1016/j.jde.2014.09.021.  Google Scholar

[14]

J. Mallet-Paret, Negatively invariant sets of compact maps and an extension of a theorem of Cartwright, J. Differential Equations, 22 (1976), 331-348.  doi: 10.1016/0022-0396(76)90032-2.  Google Scholar

[15]

R. Mañé, On the Dimension of the Compact Invariant Sets of Certain Non-Linear Maps, in Dynamical Systems and Turbulence, Warwick 1980, D. Rand and L. -S. Young, eds., Berlin, Heidelberg, 1981, Springer Berlin Heidelberg, pp. 230–242.  Google Scholar

[16]

J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, vol. 28, Cambridge University Press, 2001.  Google Scholar

[17] J. C. Robinson, Dimensions, Embeddings, and Attractors, Cambridge University Press, 2011.   Google Scholar
[18]

A. Shirikyan and S. Zelik, Exponential attractors for random dynamical systems and applications, Stoch. Partial Differ. Equ. Anal. Comput., 1 (2013), 241-281.  doi: 10.1007/s40072-013-0007-1.  Google Scholar

[19]

C. Sun, Asymptotic regularity for some dissipative equations, J. Differential Equations, 248 (2010), 342-362.  doi: 10.1016/j.jde.2009.08.007.  Google Scholar

[20]

W. Zhao, Random dynamics of stochastic $p$-Laplacian equations on $\mathbb{R}^N$ with an unbounded additive noise, J. Math. Anal. Appl., 455 (2017), 1178-1203.  doi: 10.1016/j.jmaa.2017.06.025.  Google Scholar

[21]

C.-K. ZhongM.-H. Yang and C.-Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223 (2006), 367-399.  doi: 10.1016/j.jde.2005.06.008.  Google Scholar

[22]

S. ZhouY. Tian and Z. Wang, Fractal dimension of random attractors for stochastic non-autonomous reaction-diffusion equations, Appl. Math. Comput., 276 (2016), 80-95.  doi: 10.1016/j.amc.2015.12.009.  Google Scholar

show all references

References:
[1] L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998.  doi: 10.1007/978-3-662-12878-7.  Google Scholar
[2]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction–diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[3]

T. CaraballoH. CrauelJ. A. Langa and J. C. Robinson, The effect of noise on the Chafee-Infante equation: A nonlinear case study, Proc. Amer. Math. Soc., 135 (2007), 373-382.  doi: 10.1090/S0002-9939-06-08593-5.  Google Scholar

[4]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[5]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[6]

H. Cui, A. C. Cunha and J. A. Langa, Finite-dimensionality of tempered random uniform attractors, Journal of Nonlinear Science, in press. Google Scholar

[7]

H. CuiJ. A. Langa and Y. Li, Regularity and structure of pullback attractors for reaction-diffusion type systems without uniqueness, Nonlinear Anal., 140 (2016), 208-235.  doi: 10.1016/j.na.2016.03.012.  Google Scholar

[8]

H. CuiJ. A. Langa and Y. Li, Measurability of random attractors for quasi strong-to-weak continuous random dynamical systems, J. Dynam. Differential Equations, 30 (2018), 1873-1898.  doi: 10.1007/s10884-017-9617-z.  Google Scholar

[9]

H. CuiY. Li and J. Yin, Long time behavior of stochastic MHD equations perturbed by multiplicative noises, J. Appl. Anal. Comput., 6 (2016), 1081-1104.  doi: 10.11948/2016071.  Google Scholar

[10]

H. CuiY. Li and J. Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Anal., 128 (2015), 303-324.  doi: 10.1016/j.na.2015.08.009.  Google Scholar

[11]

A. Debussche, On the finite dimensionality of random attractors, Stochastic Anal. Appl., 15 (1997), 473-491.  doi: 10.1080/07362999708809490.  Google Scholar

[12]

J. A. Langa and J. C. Robinson, Fractal dimension of a random invariant set, J. Math. Pures Appl., 85 (2006), 269-294.  doi: 10.1016/j.matpur.2005.08.001.  Google Scholar

[13]

Y. LiA. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differential Equations, 258 (2015), 504-534.  doi: 10.1016/j.jde.2014.09.021.  Google Scholar

[14]

J. Mallet-Paret, Negatively invariant sets of compact maps and an extension of a theorem of Cartwright, J. Differential Equations, 22 (1976), 331-348.  doi: 10.1016/0022-0396(76)90032-2.  Google Scholar

[15]

R. Mañé, On the Dimension of the Compact Invariant Sets of Certain Non-Linear Maps, in Dynamical Systems and Turbulence, Warwick 1980, D. Rand and L. -S. Young, eds., Berlin, Heidelberg, 1981, Springer Berlin Heidelberg, pp. 230–242.  Google Scholar

[16]

J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, vol. 28, Cambridge University Press, 2001.  Google Scholar

[17] J. C. Robinson, Dimensions, Embeddings, and Attractors, Cambridge University Press, 2011.   Google Scholar
[18]

A. Shirikyan and S. Zelik, Exponential attractors for random dynamical systems and applications, Stoch. Partial Differ. Equ. Anal. Comput., 1 (2013), 241-281.  doi: 10.1007/s40072-013-0007-1.  Google Scholar

[19]

C. Sun, Asymptotic regularity for some dissipative equations, J. Differential Equations, 248 (2010), 342-362.  doi: 10.1016/j.jde.2009.08.007.  Google Scholar

[20]

W. Zhao, Random dynamics of stochastic $p$-Laplacian equations on $\mathbb{R}^N$ with an unbounded additive noise, J. Math. Anal. Appl., 455 (2017), 1178-1203.  doi: 10.1016/j.jmaa.2017.06.025.  Google Scholar

[21]

C.-K. ZhongM.-H. Yang and C.-Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223 (2006), 367-399.  doi: 10.1016/j.jde.2005.06.008.  Google Scholar

[22]

S. ZhouY. Tian and Z. Wang, Fractal dimension of random attractors for stochastic non-autonomous reaction-diffusion equations, Appl. Math. Comput., 276 (2016), 80-95.  doi: 10.1016/j.amc.2015.12.009.  Google Scholar

[1]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[2]

Michael L. Frankel, Victor Roytburd. Fractal dimension of attractors for a Stefan problem. Conference Publications, 2003, 2003 (Special) : 281-287. doi: 10.3934/proc.2003.2003.281

[3]

Joseph Squillace. Estimating the fractal dimension of sets determined by nonergodic parameters. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5843-5859. doi: 10.3934/dcds.2017254

[4]

Alberto Maspero, Beat Schaad. One smoothing property of the scattering map of the KdV on $\mathbb{R}$. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1493-1537. doi: 10.3934/dcds.2016.36.1493

[5]

V. V. Chepyzhov, A. A. Ilyin. On the fractal dimension of invariant sets: Applications to Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 117-135. doi: 10.3934/dcds.2004.10.117

[6]

M. Bulíček, Josef Málek, Dalibor Pražák. On the dimension of the attractor for a class of fluids with pressure dependent viscosities. Communications on Pure & Applied Analysis, 2005, 4 (4) : 805-822. doi: 10.3934/cpaa.2005.4.805

[7]

Delin Wu and Chengkui Zhong. Estimates on the dimension of an attractor for a nonclassical hyperbolic equation. Electronic Research Announcements, 2006, 12: 63-70.

[8]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure & Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[9]

Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757

[10]

Yuncheng You. Random attractor for stochastic reversible Schnackenberg equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1347-1362. doi: 10.3934/dcdss.2014.7.1347

[11]

Abdelghafour Atlas. Regularity of the attractor for symmetric regularized wave equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 695-704. doi: 10.3934/cpaa.2005.4.695

[12]

Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305-312. doi: 10.3934/proc.2003.2003.305

[13]

Abdelwahab Bensouilah, Sahbi Keraani. Smoothing property for the $ L^2 $-critical high-order NLS Ⅱ. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2961-2976. doi: 10.3934/dcds.2019123

[14]

Li-Xia Liu, Sanyang Liu, Chun-Feng Wang. Smoothing Newton methods for symmetric cone linear complementarity problem with the Cartesian $P$/$P_0$-property. Journal of Industrial & Management Optimization, 2011, 7 (1) : 53-66. doi: 10.3934/jimo.2011.7.53

[15]

Marco Cabral, Ricardo Rosa, Roger Temam. Existence and dimension of the attractor for the Bénard problem on channel-like domains. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 89-116. doi: 10.3934/dcds.2004.10.89

[16]

Alain Miranville, Xiaoming Wang. Upper bound on the dimension of the attractor for nonhomogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 1996, 2 (1) : 95-110. doi: 10.3934/dcds.1996.2.95

[17]

Cristina Lizana, Leonardo Mora. Lower bounds for the Hausdorff dimension of the geometric Lorenz attractor: The homoclinic case. Discrete & Continuous Dynamical Systems, 2008, 22 (3) : 699-709. doi: 10.3934/dcds.2008.22.699

[18]

M. Bulíček, F. Ettwein, P. Kaplický, Dalibor Pražák. The dimension of the attractor for the 3D flow of a non-Newtonian fluid. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1503-1520. doi: 10.3934/cpaa.2009.8.1503

[19]

María Anguiano, Alain Haraux. The $\varepsilon$-entropy of some infinite dimensional compact ellipsoids and fractal dimension of attractors. Evolution Equations & Control Theory, 2017, 6 (3) : 345-356. doi: 10.3934/eect.2017018

[20]

Hillel Furstenberg. From invariance to self-similarity: The work of Michael Hochman on fractal dimension and its aftermath. Journal of Modern Dynamics, 2019, 15: 437-449. doi: 10.3934/jmd.2019027

2020 Impact Factor: 1.327

Article outline

[Back to Top]