• Previous Article
    Stabilization for hybrid stochastic differential equations driven by Lévy noise via periodically intermittent control
  • DCDS-B Home
  • This Issue
  • Next Article
    Exponential ergodicity for regime-switching diffusion processes in total variation norm
doi: 10.3934/dcdsb.2021298
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

A predator-prey model with cooperative hunting in the predator and group defense in the prey

1. 

School of Mathematics, Harbin Institute of Technology, Harbin 150001, China

2. 

School of Mathematics & Data Science, Shaanxi University of Science and Technology, Xi'an 710021, China

3. 

Department of Mathematics, Harbin Institute of Technology at Weihai, Weihai 264209, China

4. 

School of Science, Jimei University, Xiamen 361021, China

*Corresponding author: Ben Niu

Received  July 2021 Revised  November 2021 Early access December 2021

In this paper we propose a predator-prey model with a non-differentiable functional response in which the prey exhibits group defense and the predator exhibits cooperative hunting. There is a separatrix curve dividing the phase portrait. The species with initial population above the separatrix result in extinction of prey in finite time, and the species with initial population below it can coexist, oscillate sustainably or leave the prey surviving only. Detailed bifurcation analysis is carried out to explore the effect of cooperative hunting in the predator and aggregation in the prey on the existence and stability of the coexistence state as well as the dynamics of system. The model undergoes transcritical bifurcation, Hopf bifurcation, homoclinic (heteroclinic) bifurcation, saddle-node bifurcation, and Bogdanov-Takens bifurcation, and through numerical simulations it is found that it possesses rich dynamics including bubble loop of limit cycles, and open ended branch of periodic orbits disappearing through a homoclinic cycle or a loop of heteroclinic orbits. Also, a continuous transition of different types of Hopf branches are investigated which forms a global picture of Hopf bifurcation in the model.

Citation: Yanfei Du, Ben Niu, Junjie Wei. A predator-prey model with cooperative hunting in the predator and group defense in the prey. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021298
References:
[1]

V. AjraldiM. Pittavino and E. Venturino, Modeling herd behavior in population systems, Nonlinear Anal. RWA, 12 (2011), 2319-2338.  doi: 10.1016/j.nonrwa.2011.02.002.  Google Scholar

[2]

V. AjraldiE. Venturino and B. Wade, Mimicking spatial effects in predator-prey models with group defense, Proc. Int. Conf. CMMSE, 1 (2009), 57-66.   Google Scholar

[3]

Q. An and W. H. Jiang, Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 487-510.  doi: 10.3934/dcdsb.2018183.  Google Scholar

[4]

M. T. Alves and F. M. Hilker, Hunting cooperation and Allee effects in predators, J. Theor. Biol., 419 (2017), 13-22.  doi: 10.1016/j.jtbi.2017.02.002.  Google Scholar

[5]

L. Berec, Impacts of foraging facilitation among predators on predator-prey dynamics, Bull. Math. Biol., 72 (2010), 94-121.  doi: 10.1007/s11538-009-9439-1.  Google Scholar

[6]

C. Boesch, Cooperative hunting in wild chimpanzees, Anim. Behav., 48 (1994), 653-667.  doi: 10.1006/anbe.1994.1285.  Google Scholar

[7]

P. A. Braza, Predator-prey dynamics with square root functional responses, Nonlinear Anal. RWA, 13 (2012), 1837-1843.  doi: 10.1016/j.nonrwa.2011.12.014.  Google Scholar

[8]

R. Bshary, A. Hohner, K. Ait-el-Djoudi and H. Fricke, Interspecific communicative and coordinated hunting between groupers and giant moray eels in the Red Sea, PLoS Biol., 4 (2006). doi: 10.1371/journal.pbio.0040431.  Google Scholar

[9]

I. M. Bulai and E. Venturino, Shape effects on herd behavior in ecological interacting population models, Math. Comput. Simulation, 141 (2017), 40-55.  doi: 10.1016/j.matcom.2017.04.009.  Google Scholar

[10]

C. CosnerD. L. DeAngelisJ. S. Ault and D. B. Olson, Effects of spatial grouping on the functional response of predators, Theor. Popul. Biol., 56 (1999), 65-75.  doi: 10.1006/tpbi.1999.1414.  Google Scholar

[11]

F. Courchamp and D. W. Macdonald, Crucial importance of pack size in the African wild dog Lycaon pictus, Anim. Conserv., 4 (2001), 169-174.  doi: 10.1017/S1367943001001196.  Google Scholar

[12]

A. DhoogeW. Govaerts and Y. A. Kuznetsov, MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Softw., 29 (2003), 141-164.  doi: 10.1145/779359.779362.  Google Scholar

[13]

S. Djilali, Impact of prey herd shape on the predator-prey interaction, Chaos Solitons Fractals, 120 (2019), 139-148.  doi: 10.1016/j.chaos.2019.01.022.  Google Scholar

[14] L. A. Dugatkin, Cooperation Among Animals: An Evolutionary Perspective, Oxford University Press, Oxford, 1997.   Google Scholar
[15]

H. I. Freedman and G. S. K. Wolkowicz, Predator-prey systems with group defence: The paradox of enrichment revisited, Bull. Math. Biol., 48 (1986), 493-508.   Google Scholar

[16]

D. P. Hector, Cooperative hunting and its relationship to foraging success and prey size in an avian predator, Ethology, 73 (1986), 247-257.  doi: 10.1111/j.1439-0310.1986.tb00915.x.  Google Scholar

[17]

C. S. Holling, The components of predation as revealed by a study of small-mammal predation of the European pine sawfly, Can. Entomol., 91 (1959), 293-320.  doi: 10.4039/Ent91293-5.  Google Scholar

[18]

J. C. Holmes and W. M. Bethel, Modification of intermediate host behavior by parasites, Zoolog J. Linnean Soc., 51 (1972), 123-149.   Google Scholar

[19]

S. R. J. JangW. Zhang and V. Larriva, Cooperative hunting in a predator-prey system with Allee effects in the prey, Nat. Resour. Model, 31 (2018), 12194.  doi: 10.1111/nrm.12194.  Google Scholar

[20]

N. D. Kazarinov and P. V. D. Driessche, A model predator-prey system with functional response, Math. Biosci., 39 (1978), 125-134.  doi: 10.1016/0025-5564(78)90031-7.  Google Scholar

[21]

M. C. KhnkeI. Siekmann and H. Malchow, Taxis-driven pattern formation in a predator-prey model with group defense, Ecol. Complex., 43 (2020), 100848.  doi: 10.1016/j.ecocom.2020.100848.  Google Scholar

[22]

B. W. Kooi and E. Venturino, Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey, Math. Biosci., 274 (2016), 58-72.  doi: 10.1016/j.mbs.2016.02.003.  Google Scholar

[23]

Y. A. Kuznetsov, Element of Applied Bifurcation Theory, 2$^{nd}$ edition, Springer-Verlag, New York, 1998.  Google Scholar

[24]

M. W. Moffett, Foraging dynamics in the group-hunting myrmicine ant, pheidologeton diversus, J. Insect. Behav., 1 (1988), 309-331.  doi: 10.1007/BF01054528.  Google Scholar

[25]

S. PalN. PalS. Samanta and J. Chattopadhyay, Effect of hunting cooperation and fear in a predator-prey model, Ecol. Complex, 39 (2019), 100770.  doi: 10.1016/j.ecocom.2019.100770.  Google Scholar

[26]

J. A. Polking and D. Arnold, Ordinary Differential Equations Using MATLAB, Prentice-Hall, Englewood Cliffs, 2003. Google Scholar

[27]

S. N. RawP. MishraR. Kumar and S. Thakur, Complex behavior of prey-predator system exhibiting group defense: A mathematical modeling study, Chaos Soliton Fract., 100 (2017), 74-90.  doi: 10.1016/j.chaos.2017.05.010.  Google Scholar

[28]

D. Scheel and C. Packer, Group hunting behavioir of lions: A search for cooperation, Anim. Behav., 41 (1991), 697-709.  doi: 10.1016/S0003-3472(05)80907-8.  Google Scholar

[29]

P. A. Schmidt and L. D. Mech, Wolf pack size and food acquisition, Am. Nat., 150 (1997), 513-517.  doi: 10.1086/286079.  Google Scholar

[30]

D. SenS. Ghorai and M. Banerjee, Allee effect in prey versus hunting cooperation on predator-enhancement of stable coexistence, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1950081.  doi: 10.1142/S0218127419500810.  Google Scholar

[31]

D. SongC. Li and Y. Song, Stability and cross-diffusion-driven instability in a diffusive predator-prey system with hunting cooperation functional response, Nonlinear Anal. RWA, 54 (2020), 103106.  doi: 10.1016/j.nonrwa.2020.103106.  Google Scholar

[32]

Y. SongY. Peng and T. Zhang, The spatially inhomogeneous Hopf bifurcation induced by memory delay in a memory-based diffusion system, J. Differential Equations, 300 (2021), 597-624.  doi: 10.1016/j.jde.2021.08.010.  Google Scholar

[33]

Y. Song, J. Shi and H. Wang, Spatiotemporal dynamics of a diffusive consumer-resource model with explicit spatial memory, Stud. Appl. Math., (2021), 1–23 doi: 10.1111/sapm.12443.  Google Scholar

[34]

J. S. Tener, Muskoxen, , Queen's Printer, Ottawa, 1995. Google Scholar

[35]

G. W. Uetz, Foraging strategies of spiders, Trends. Ecol. Evol., 7 (1992), 155-159.  doi: 10.1016/0169-5347(92)90209-T.  Google Scholar

[36]

E. Venturino and S. Petrovskii, Spatiotemporal behavior of a prey-predator system with a group defense for prey, Ecol. Complex, 14 (2013), 37-47.  doi: 10.1016/j.ecocom.2013.01.004.  Google Scholar

[37]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2$^{nd}$ edition, Springer-Verlag, New York, 2003.  Google Scholar

[38]

D. Wu and M. Zhao, Qualitative analysis for a diffusive predator-prey model with hunting cooperative, Physica A, 515 (2019), 299-309.  doi: 10.1016/j.physa.2018.09.176.  Google Scholar

[39]

Z. Xu and Y. Song, Bifurcation analysis of a diffusive predator-prey system with a herd behavior and quadratic mortality, Math. Method Appl. Sci., 38 (2015), 2994-3006.  doi: 10.1002/mma.3275.  Google Scholar

[40]

C. XuS. Yuan and T. Zhang, Global dynamics of a predator-prey model with defense mechanism for prey, Appl. Math. Lett., 62 (2016), 42-48.  doi: 10.1016/j.aml.2016.06.013.  Google Scholar

[41]

S. YanD. JiaT. Zhang and S. Yuan, Pattern dynamics in a diffusive predator-prey model with hunting cooperations, Chaos Solitons Fract., 130 (2020), 109428.  doi: 10.1016/j.chaos.2019.109428.  Google Scholar

[42]

H. Yin and X. Wen, Hopf bifurcation of a diffusive Gause-type predator-prey model induced by time fractional-order derivatives, Math. Method Appl. Sci., 41 (2018), 5178-5189.  doi: 10.1002/mma.5066.  Google Scholar

[43]

S. YuanC. Xu and T. Zhang, Spatial dynamics in a predator-prey model with herd behavior, Chaos, 23 (2013), 033102.  doi: 10.1063/1.4812724.  Google Scholar

show all references

References:
[1]

V. AjraldiM. Pittavino and E. Venturino, Modeling herd behavior in population systems, Nonlinear Anal. RWA, 12 (2011), 2319-2338.  doi: 10.1016/j.nonrwa.2011.02.002.  Google Scholar

[2]

V. AjraldiE. Venturino and B. Wade, Mimicking spatial effects in predator-prey models with group defense, Proc. Int. Conf. CMMSE, 1 (2009), 57-66.   Google Scholar

[3]

Q. An and W. H. Jiang, Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 487-510.  doi: 10.3934/dcdsb.2018183.  Google Scholar

[4]

M. T. Alves and F. M. Hilker, Hunting cooperation and Allee effects in predators, J. Theor. Biol., 419 (2017), 13-22.  doi: 10.1016/j.jtbi.2017.02.002.  Google Scholar

[5]

L. Berec, Impacts of foraging facilitation among predators on predator-prey dynamics, Bull. Math. Biol., 72 (2010), 94-121.  doi: 10.1007/s11538-009-9439-1.  Google Scholar

[6]

C. Boesch, Cooperative hunting in wild chimpanzees, Anim. Behav., 48 (1994), 653-667.  doi: 10.1006/anbe.1994.1285.  Google Scholar

[7]

P. A. Braza, Predator-prey dynamics with square root functional responses, Nonlinear Anal. RWA, 13 (2012), 1837-1843.  doi: 10.1016/j.nonrwa.2011.12.014.  Google Scholar

[8]

R. Bshary, A. Hohner, K. Ait-el-Djoudi and H. Fricke, Interspecific communicative and coordinated hunting between groupers and giant moray eels in the Red Sea, PLoS Biol., 4 (2006). doi: 10.1371/journal.pbio.0040431.  Google Scholar

[9]

I. M. Bulai and E. Venturino, Shape effects on herd behavior in ecological interacting population models, Math. Comput. Simulation, 141 (2017), 40-55.  doi: 10.1016/j.matcom.2017.04.009.  Google Scholar

[10]

C. CosnerD. L. DeAngelisJ. S. Ault and D. B. Olson, Effects of spatial grouping on the functional response of predators, Theor. Popul. Biol., 56 (1999), 65-75.  doi: 10.1006/tpbi.1999.1414.  Google Scholar

[11]

F. Courchamp and D. W. Macdonald, Crucial importance of pack size in the African wild dog Lycaon pictus, Anim. Conserv., 4 (2001), 169-174.  doi: 10.1017/S1367943001001196.  Google Scholar

[12]

A. DhoogeW. Govaerts and Y. A. Kuznetsov, MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Softw., 29 (2003), 141-164.  doi: 10.1145/779359.779362.  Google Scholar

[13]

S. Djilali, Impact of prey herd shape on the predator-prey interaction, Chaos Solitons Fractals, 120 (2019), 139-148.  doi: 10.1016/j.chaos.2019.01.022.  Google Scholar

[14] L. A. Dugatkin, Cooperation Among Animals: An Evolutionary Perspective, Oxford University Press, Oxford, 1997.   Google Scholar
[15]

H. I. Freedman and G. S. K. Wolkowicz, Predator-prey systems with group defence: The paradox of enrichment revisited, Bull. Math. Biol., 48 (1986), 493-508.   Google Scholar

[16]

D. P. Hector, Cooperative hunting and its relationship to foraging success and prey size in an avian predator, Ethology, 73 (1986), 247-257.  doi: 10.1111/j.1439-0310.1986.tb00915.x.  Google Scholar

[17]

C. S. Holling, The components of predation as revealed by a study of small-mammal predation of the European pine sawfly, Can. Entomol., 91 (1959), 293-320.  doi: 10.4039/Ent91293-5.  Google Scholar

[18]

J. C. Holmes and W. M. Bethel, Modification of intermediate host behavior by parasites, Zoolog J. Linnean Soc., 51 (1972), 123-149.   Google Scholar

[19]

S. R. J. JangW. Zhang and V. Larriva, Cooperative hunting in a predator-prey system with Allee effects in the prey, Nat. Resour. Model, 31 (2018), 12194.  doi: 10.1111/nrm.12194.  Google Scholar

[20]

N. D. Kazarinov and P. V. D. Driessche, A model predator-prey system with functional response, Math. Biosci., 39 (1978), 125-134.  doi: 10.1016/0025-5564(78)90031-7.  Google Scholar

[21]

M. C. KhnkeI. Siekmann and H. Malchow, Taxis-driven pattern formation in a predator-prey model with group defense, Ecol. Complex., 43 (2020), 100848.  doi: 10.1016/j.ecocom.2020.100848.  Google Scholar

[22]

B. W. Kooi and E. Venturino, Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey, Math. Biosci., 274 (2016), 58-72.  doi: 10.1016/j.mbs.2016.02.003.  Google Scholar

[23]

Y. A. Kuznetsov, Element of Applied Bifurcation Theory, 2$^{nd}$ edition, Springer-Verlag, New York, 1998.  Google Scholar

[24]

M. W. Moffett, Foraging dynamics in the group-hunting myrmicine ant, pheidologeton diversus, J. Insect. Behav., 1 (1988), 309-331.  doi: 10.1007/BF01054528.  Google Scholar

[25]

S. PalN. PalS. Samanta and J. Chattopadhyay, Effect of hunting cooperation and fear in a predator-prey model, Ecol. Complex, 39 (2019), 100770.  doi: 10.1016/j.ecocom.2019.100770.  Google Scholar

[26]

J. A. Polking and D. Arnold, Ordinary Differential Equations Using MATLAB, Prentice-Hall, Englewood Cliffs, 2003. Google Scholar

[27]

S. N. RawP. MishraR. Kumar and S. Thakur, Complex behavior of prey-predator system exhibiting group defense: A mathematical modeling study, Chaos Soliton Fract., 100 (2017), 74-90.  doi: 10.1016/j.chaos.2017.05.010.  Google Scholar

[28]

D. Scheel and C. Packer, Group hunting behavioir of lions: A search for cooperation, Anim. Behav., 41 (1991), 697-709.  doi: 10.1016/S0003-3472(05)80907-8.  Google Scholar

[29]

P. A. Schmidt and L. D. Mech, Wolf pack size and food acquisition, Am. Nat., 150 (1997), 513-517.  doi: 10.1086/286079.  Google Scholar

[30]

D. SenS. Ghorai and M. Banerjee, Allee effect in prey versus hunting cooperation on predator-enhancement of stable coexistence, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1950081.  doi: 10.1142/S0218127419500810.  Google Scholar

[31]

D. SongC. Li and Y. Song, Stability and cross-diffusion-driven instability in a diffusive predator-prey system with hunting cooperation functional response, Nonlinear Anal. RWA, 54 (2020), 103106.  doi: 10.1016/j.nonrwa.2020.103106.  Google Scholar

[32]

Y. SongY. Peng and T. Zhang, The spatially inhomogeneous Hopf bifurcation induced by memory delay in a memory-based diffusion system, J. Differential Equations, 300 (2021), 597-624.  doi: 10.1016/j.jde.2021.08.010.  Google Scholar

[33]

Y. Song, J. Shi and H. Wang, Spatiotemporal dynamics of a diffusive consumer-resource model with explicit spatial memory, Stud. Appl. Math., (2021), 1–23 doi: 10.1111/sapm.12443.  Google Scholar

[34]

J. S. Tener, Muskoxen, , Queen's Printer, Ottawa, 1995. Google Scholar

[35]

G. W. Uetz, Foraging strategies of spiders, Trends. Ecol. Evol., 7 (1992), 155-159.  doi: 10.1016/0169-5347(92)90209-T.  Google Scholar

[36]

E. Venturino and S. Petrovskii, Spatiotemporal behavior of a prey-predator system with a group defense for prey, Ecol. Complex, 14 (2013), 37-47.  doi: 10.1016/j.ecocom.2013.01.004.  Google Scholar

[37]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2$^{nd}$ edition, Springer-Verlag, New York, 2003.  Google Scholar

[38]

D. Wu and M. Zhao, Qualitative analysis for a diffusive predator-prey model with hunting cooperative, Physica A, 515 (2019), 299-309.  doi: 10.1016/j.physa.2018.09.176.  Google Scholar

[39]

Z. Xu and Y. Song, Bifurcation analysis of a diffusive predator-prey system with a herd behavior and quadratic mortality, Math. Method Appl. Sci., 38 (2015), 2994-3006.  doi: 10.1002/mma.3275.  Google Scholar

[40]

C. XuS. Yuan and T. Zhang, Global dynamics of a predator-prey model with defense mechanism for prey, Appl. Math. Lett., 62 (2016), 42-48.  doi: 10.1016/j.aml.2016.06.013.  Google Scholar

[41]

S. YanD. JiaT. Zhang and S. Yuan, Pattern dynamics in a diffusive predator-prey model with hunting cooperations, Chaos Solitons Fract., 130 (2020), 109428.  doi: 10.1016/j.chaos.2019.109428.  Google Scholar

[42]

H. Yin and X. Wen, Hopf bifurcation of a diffusive Gause-type predator-prey model induced by time fractional-order derivatives, Math. Method Appl. Sci., 41 (2018), 5178-5189.  doi: 10.1002/mma.5066.  Google Scholar

[43]

S. YuanC. Xu and T. Zhang, Spatial dynamics in a predator-prey model with herd behavior, Chaos, 23 (2013), 033102.  doi: 10.1063/1.4812724.  Google Scholar

Figure 1.  When $ (\frac{1}{\beta})^{\frac{1}{\alpha}}<K $, there is a unique interior equilibrium
Figure 2.  a) Bifurcation diagram of system (2) with $ r = 0.7,K = 4,\alpha = 0.5,\beta = 0.7 $. b) The period of the limit cycles. c) When $ c = 0.3>c_H $, $ E^* $ loses its stability, and there is a limit cycle. d) When $ c = c_{het} = 0.432 $, there is a loop of heteroclinic orbits
Figure 3.  If $ (\frac{1}{\beta})^{\frac{1}{\alpha}} >K $, the black curve is the left side of Eq. (8), the blue ones denote the right side of Eq. (8) with three different $ c $ values
Figure 4.  a) Bifurcation diagram of system (2) with $ r = 2,K = 4,\alpha = 0.5,\beta = 0.35 $. b) When $ c = c_{hom} = 1.662 $, there is a homoclinic cycle
Figure 5.  a) The diagram of $ u- $nullclines with $ \alpha_1<\alpha_2 $. b) The diagram of $ v- $nullclines with $ \alpha_1<\alpha_2 $
Figure 6.  The diagrams of $ u- $nullclines and $ v- $nullclines for different values of $ \alpha $ for a) case (Ⅰ-ⅰa); b) case (Ⅰ-ⅰb); c) case (Ⅰ-ⅰc) and d) case (Ⅰ-ⅱ)
Figure 7.  Choose $ r = 2, K = 2, c = 2, \beta = 0.7 $ for case (I-ia). a) The bifurcation diagram of $ \alpha-u-v $. b) When $ \alpha = \alpha_{het} = 0.688 $, there is a loop of heteroclinic orbits
Figure 8.  Choose $ r = 2, K = 1.2, c = 2, \beta = 0.7 $ for case (I-ia). a) The bifurcation diagram of $ \alpha-u-v $. b) When $ \alpha = 0.41 $, there is a homoclinic cycle
Figure 9.  Choose $ r = 2, K = 1.2, c = 1.5, \beta = 0.7 $ for case (I-ib). a) The bifurcation diagram of $ \alpha-u-v $. b) When $ \alpha = 0.26 $, there is a homoclinic cycle
Figure 10.  Choose $ r = 1.7, K = 7, c = 0.3, \beta = 0.7 $ for case (I-ic). a) The bifurcation diagram of $ \alpha-u-v $. b) When $ \alpha = 0.86 $, there is a loop of heteroclinic orbits
Figure 11.  The bifurcation diagram for case (I-ii) choosing $ K = 4,c = 0.3,\beta = 0.7 $ and a) $ r = 0.7 $; b) $ r = 1.033 $; c) $ r = 1.05 $ d) $ r = 1.4 $
Figure 12.  a) The diagram of $ u- $nullclines and $ v- $nullclines for different $ \alpha $ ($ \alpha_1<\alpha_2 $) when $ K>1,\beta>1 $ (case Ⅱ). b) Bifurcation diagram of $ \alpha-u-v $ with $ r = 1.7, K = 2.1, c = 0.7, \beta = 1.1 $. c) Choosing $ r = 1.7, K = 2.1, c = 0.7, \beta = 1.1 $, there is a loop of heteroclinic orbits when $ \alpha = 0.735 $
Figure 13.  a) The bifurcation diagram for case (Ⅲ-ⅰ) with $ r = 1, K = 0.8,c = 3, \beta = 1.3 $. b) When $ \alpha = 0.63 $, there is a loop of heteroclinic orbits
Figure 14.  a) The diagram of $ u- $nullclines and $ v- $nullclines for different values of $ \alpha $ when $ K<1,\beta>1, \frac{1}{\beta}>K $ (case Ⅲ-ⅱ). b) The bifurcation diagram of $ \alpha-u-v $ with $ r = 1, K = 0.5,c = 3, \beta = 1.2 $. c) Choosing $ r = 1, K = 0.5,c = 3, \beta = 1.2 $, there is a homoclinic cycle when $ \alpha = 0.3899 $
Figure 15.  a) The diagram of $ u- $nullclines and $ v- $nullclines for different values of $ \alpha $ when $ K<1,\beta<1 $ (case (Ⅳ-ⅰ)). b) Bifurcation diagram of $ \alpha-u-v $ with $ r = 2, K = 0.8, c = 2, \beta = 0.9 $. c) Choose $ r = 2, K = 0.8, c = 2, \beta = 0.9 $, there is a homoclinic cycle when $ \alpha = 0.4065 $
Figure 16.  The bifurcation set near Bogdanov-Takens bifurcation point BT with $ r = 2, K = 4, \beta = 0.35 $
Table 1.  Main results for system (2) taking $ c $ as bifurcation parameter
$ Case $ $ \begin{array}{l} Interior \;equilibria \end{array} $ $ \begin{array}{l} Type \; of \;bifurcation \end{array} $ $ \begin{array}{l} Shape\; of\; Hopf \;branch \end{array} $ $ \begin{array}{l} Periodic \;orbits\; disappear \;through \end{array} $ $ Figure $
$ (\frac{1}{\beta})^{\frac{1}{\alpha}}<K $ $ one $ $ \begin{array}{l} Hopf \end{array} $ $ \begin{array}{l} open \; ended \end{array} $ $ \begin{array}{l} a \; loop \; of \;heteroclinic \;orbits \end{array} $ Figure 1
Figure 2
$ (\frac{1}{\beta})^{\frac{1}{\alpha}}>K $ $ \begin{array}{ll} c>c_{sn}\\ c=c_{sn} \\ c<c_{sn}\end{array} $ two
one
none
$ \begin{array}{l} saddle-node \;Hopf \end{array} $ $ \begin{array}{l} open \; ended \end{array} $ $ \begin{array}{l} a\; homoclinic \;cycle \end{array} $ Figure 4
$ Case $ $ \begin{array}{l} Interior \;equilibria \end{array} $ $ \begin{array}{l} Type \; of \;bifurcation \end{array} $ $ \begin{array}{l} Shape\; of\; Hopf \;branch \end{array} $ $ \begin{array}{l} Periodic \;orbits\; disappear \;through \end{array} $ $ Figure $
$ (\frac{1}{\beta})^{\frac{1}{\alpha}}<K $ $ one $ $ \begin{array}{l} Hopf \end{array} $ $ \begin{array}{l} open \; ended \end{array} $ $ \begin{array}{l} a \; loop \; of \;heteroclinic \;orbits \end{array} $ Figure 1
Figure 2
$ (\frac{1}{\beta})^{\frac{1}{\alpha}}>K $ $ \begin{array}{ll} c>c_{sn}\\ c=c_{sn} \\ c<c_{sn}\end{array} $ two
one
none
$ \begin{array}{l} saddle-node \;Hopf \end{array} $ $ \begin{array}{l} open \; ended \end{array} $ $ \begin{array}{l} a\; homoclinic \;cycle \end{array} $ Figure 4
Table 2.  Main results for system (2) taking $ \alpha $ as bifurcation parameter when $ K\neq 1 $ and $ \beta\neq 1 $
$ Case$ $Condition$ $\begin{array}{l} Interior \;equilibria \end{array}$ $\begin{array}{l} Type\; of \;Bifurcation \end{array}$ $\begin{array}{l} Shape\; of\; Hopf\; branch \end{array}$ $\begin{array}{l} Periodic \;orbits \; disappear \; through \end{array}$ Figure
$ Case \; (I-ia)$ $\begin{array}{l} K>1, \beta<1\\c>c_2 \end{array}$ $\begin{array}{ll} 0<\alpha<\alpha_T \;\;E_1^*, E_2^* \\ \alpha>\alpha_T \;\;\;\;\;\;\;\;E_1^*\end{array}$ $\begin{array}{l} Hopf \; transcritical \end{array}$ $\begin{array}{l} open\; ended\end{array}$ $\begin{array}{l} a\; homoclinic \;cycle\; or\; a \;loop\; of\; heteroclinic \;orbits \end{array}$ Figure 6 a)
Figure 7
Figure 8
$Case \; (I-ib)$ $\begin{array}{l} K>1, \beta<1\\c_1<c<c_2, \\K<2 \end{array}$ $\begin{array}{ll} 0<\alpha<\alpha_{sn} \;\;\;\;E_1^*, E_2^* \\ \alpha>\alpha_{sn} \;\;\;\;\;\;\;\;none \end{array}$ $\begin{array}{l} saddle-node \; Hopf \end{array}$ $\begin{array}{l} open\; ended \end{array}$ $\begin{array}{l} a\; homoclinic \;cycle \end{array}$ Figure 6 b)
Figure 9
$Case \; (I-ic)$ $\begin{array}{l} K>1, \beta<1\\c_1<c<c_2, \\K>2 \end{array}$ $\begin{array}{ll} 0<\alpha<\alpha_T\;\;\;\;E_1^*, E_2^* \\ \alpha>\alpha_T\;\;\;\;\;\;\;\;E_1^* \end{array}$ $\begin{array}{l} Hopf \; transcritical \end{array}$ $\begin{array}{l} open\; ended \end{array}$ $\begin{array}{l} a \;loop \; of \; heteroclinic \;orbits \end{array}$ Figure 6 c)
Figure 10
$Case \; (I-ii)$ $\begin{array}{l} K>1, \beta<1\\c<c_1 \end{array}$ $\begin{array}{ll} \alpha<\alpha_{sn} \;\;\;\;\;none\\ \alpha_{sn}<\alpha<\alpha_T \;\;\;\;E_1^*, E_2^* \\ \alpha>\alpha_T \;\;\;\;E_1^* \end{array}$ $\begin{array}{l} saddle-node \; Hopf \; transcritical \end{array}$ $\begin{array}{l} a \;bubble; \;or open\; ended(two \;branches)\end{array}$ $\begin{array}{l} an \; equilibrium; \;or a\; homoclinic \;cycle \; or \; a \;loop \; of \; heteroclinic \; orbits \end{array}$ Figure 6 d)
Figure 11
$Case \;(II)$ $K>1, \beta>1$ $\begin{array}{ll} \alpha<\alpha_s\;\;\;\;\;none\\\alpha>\alpha_s \;\;\;\;\;E_1^* \end{array}$ $Hopf$ $\begin{array}{l} open\; ended \end{array}$ $\begin{array}{l} \; a \;loop \; of \; heteroclinic \;orbits \end{array}$ Figure 12
$Case \;(III-i)$ $\begin{array}{l} K<1, \beta>1\\\frac{1}{\beta}<K \end{array}$ $\begin{array}{ll} \alpha<\alpha_s\;\;\;\;\;none\\\alpha>\alpha_s\;\;\;\;\;E_1^* \end{array}$ $Hopf$ $\begin{array}{l} open\; ended\end{array}$ $\begin{array}{l} a \;loop \; of \; heteroclinic \;orbits \end{array}$ Figure 13
$ Case \; (III-ii)$ $\begin{array}{l} K<1, \beta>1\\\frac{1}{\beta}>K \end{array}$ $\begin{array}{ll} \alpha<\alpha_s\;\;\;\;\;none \\ \alpha_s<\alpha<\alpha_T \;\;\;\;E_1^* \\ \alpha_T<\alpha<\alpha_{sn}\;\;\;\;\;E_1^*, E_2^* \\ \alpha>\alpha_{sn} \;\;\;\;\;none \end{array}$ $\begin{array}{l} saddle-node \;\\ Hopf \; \\transcritical \end{array}$ $\begin{array}{l} open\; ended \end{array}$ $\begin{array}{l} a\; homoclinic \;cycle \end{array}$ Figure 14
$Case \; (IV-i)$ $\begin{array}{l} K<1, \beta<1\\c>c_1 \end{array}$ $\begin{array}{ll} \alpha>\alpha_{sn} \;\;\;\;\;none\\ 0<\alpha<\alpha_{sn}\;\;\;\;\;E_1^*, E_2^* \end{array}$ $\begin{array}{l} saddle-node \; \\ Hopf \; \end{array}$ $\begin{array}{l} open\; ended \end{array}$ $\begin{array}{l} a\; homoclinic \;cycle \end{array}$ Figure 15
$ Case \; (IV-ii)$ $\begin{array}{l} K<1, \beta<1\\c<c_1 \end{array}$ $none$ $none$ $none$ $none$ $none$
$ Case$ $Condition$ $\begin{array}{l} Interior \;equilibria \end{array}$ $\begin{array}{l} Type\; of \;Bifurcation \end{array}$ $\begin{array}{l} Shape\; of\; Hopf\; branch \end{array}$ $\begin{array}{l} Periodic \;orbits \; disappear \; through \end{array}$ Figure
$ Case \; (I-ia)$ $\begin{array}{l} K>1, \beta<1\\c>c_2 \end{array}$ $\begin{array}{ll} 0<\alpha<\alpha_T \;\;E_1^*, E_2^* \\ \alpha>\alpha_T \;\;\;\;\;\;\;\;E_1^*\end{array}$ $\begin{array}{l} Hopf \; transcritical \end{array}$ $\begin{array}{l} open\; ended\end{array}$ $\begin{array}{l} a\; homoclinic \;cycle\; or\; a \;loop\; of\; heteroclinic \;orbits \end{array}$ Figure 6 a)
Figure 7
Figure 8
$Case \; (I-ib)$ $\begin{array}{l} K>1, \beta<1\\c_1<c<c_2, \\K<2 \end{array}$ $\begin{array}{ll} 0<\alpha<\alpha_{sn} \;\;\;\;E_1^*, E_2^* \\ \alpha>\alpha_{sn} \;\;\;\;\;\;\;\;none \end{array}$ $\begin{array}{l} saddle-node \; Hopf \end{array}$ $\begin{array}{l} open\; ended \end{array}$ $\begin{array}{l} a\; homoclinic \;cycle \end{array}$ Figure 6 b)
Figure 9
$Case \; (I-ic)$ $\begin{array}{l} K>1, \beta<1\\c_1<c<c_2, \\K>2 \end{array}$ $\begin{array}{ll} 0<\alpha<\alpha_T\;\;\;\;E_1^*, E_2^* \\ \alpha>\alpha_T\;\;\;\;\;\;\;\;E_1^* \end{array}$ $\begin{array}{l} Hopf \; transcritical \end{array}$ $\begin{array}{l} open\; ended \end{array}$ $\begin{array}{l} a \;loop \; of \; heteroclinic \;orbits \end{array}$ Figure 6 c)
Figure 10
$Case \; (I-ii)$ $\begin{array}{l} K>1, \beta<1\\c<c_1 \end{array}$ $\begin{array}{ll} \alpha<\alpha_{sn} \;\;\;\;\;none\\ \alpha_{sn}<\alpha<\alpha_T \;\;\;\;E_1^*, E_2^* \\ \alpha>\alpha_T \;\;\;\;E_1^* \end{array}$ $\begin{array}{l} saddle-node \; Hopf \; transcritical \end{array}$ $\begin{array}{l} a \;bubble; \;or open\; ended(two \;branches)\end{array}$ $\begin{array}{l} an \; equilibrium; \;or a\; homoclinic \;cycle \; or \; a \;loop \; of \; heteroclinic \; orbits \end{array}$ Figure 6 d)
Figure 11
$Case \;(II)$ $K>1, \beta>1$ $\begin{array}{ll} \alpha<\alpha_s\;\;\;\;\;none\\\alpha>\alpha_s \;\;\;\;\;E_1^* \end{array}$ $Hopf$ $\begin{array}{l} open\; ended \end{array}$ $\begin{array}{l} \; a \;loop \; of \; heteroclinic \;orbits \end{array}$ Figure 12
$Case \;(III-i)$ $\begin{array}{l} K<1, \beta>1\\\frac{1}{\beta}<K \end{array}$ $\begin{array}{ll} \alpha<\alpha_s\;\;\;\;\;none\\\alpha>\alpha_s\;\;\;\;\;E_1^* \end{array}$ $Hopf$ $\begin{array}{l} open\; ended\end{array}$ $\begin{array}{l} a \;loop \; of \; heteroclinic \;orbits \end{array}$ Figure 13
$ Case \; (III-ii)$ $\begin{array}{l} K<1, \beta>1\\\frac{1}{\beta}>K \end{array}$ $\begin{array}{ll} \alpha<\alpha_s\;\;\;\;\;none \\ \alpha_s<\alpha<\alpha_T \;\;\;\;E_1^* \\ \alpha_T<\alpha<\alpha_{sn}\;\;\;\;\;E_1^*, E_2^* \\ \alpha>\alpha_{sn} \;\;\;\;\;none \end{array}$ $\begin{array}{l} saddle-node \;\\ Hopf \; \\transcritical \end{array}$ $\begin{array}{l} open\; ended \end{array}$ $\begin{array}{l} a\; homoclinic \;cycle \end{array}$ Figure 14
$Case \; (IV-i)$ $\begin{array}{l} K<1, \beta<1\\c>c_1 \end{array}$ $\begin{array}{ll} \alpha>\alpha_{sn} \;\;\;\;\;none\\ 0<\alpha<\alpha_{sn}\;\;\;\;\;E_1^*, E_2^* \end{array}$ $\begin{array}{l} saddle-node \; \\ Hopf \; \end{array}$ $\begin{array}{l} open\; ended \end{array}$ $\begin{array}{l} a\; homoclinic \;cycle \end{array}$ Figure 15
$ Case \; (IV-ii)$ $\begin{array}{l} K<1, \beta<1\\c<c_1 \end{array}$ $none$ $none$ $none$ $none$ $none$
Table 3.  Main results for system (2) taking $ \alpha $ as bifurcation parameter when $ K = 1 $ or $ \beta = 1 $
$ Case$ $Condition$ $\begin{array}{l} Interior \;equilibria \end{array}$ $\begin{array}{l} Type\; of\\Bifurcation \end{array}$ $\begin{array}{l} Shape\; of\; Hopf\;branch \end{array}$ $\begin{array}{l} Periodic \;orbits \; disappear \;through \end{array}$
$Case \;(V)$ $\begin{array}{l} K=1, \beta>1 \end{array}$ $\begin{array}{ll} \alpha<\alpha_s\;\;\;\;\;none\\\alpha>\alpha_s\;\;\;\;\;E_1^* \end{array}$ $Hopf$ $\begin{array}{l} open\; ended\end{array}$ $\begin{array}{l} a \;loop\;of\; heteroclinic \;orbits \end{array}$
$Case \; (VI-i)$ $\begin{array}{l} K=1, \beta<1\\c>c_1 \end{array}$ $\begin{array}{ll} \alpha>\alpha_{sn} \;\;\;\;\;none\\ 0 <\alpha<\alpha_{sn}\;\;\;\;\;E_1^*, E_2^* \end{array}$ $\begin{array}{l} saddle-node\; \\ Hopf \end{array}$ $\begin{array}{l} open\; ended \end{array}$ $\begin{array}{l} a\; homoclinic \;cycle \end{array}$
$Case \; (VI-ii)$ $\begin{array}{l} K=1, \beta<1\\c<c_1 \end{array}$ $none$ $none$ $none$ $none$
$ Case \; (VII)$ $\begin{array}{l} K>1, \beta=1 \end{array}$ $\begin{array}{ll} \alpha>0\;\;\;\;\;E_1^* \end{array}$ $\begin{array}{l} Hopf \end{array}$ $\begin{array}{l} open\; ended\end{array}$ $\begin{array}{l} a\; homoclinic \;cycle \; or \; a \;loop \; of \; heteroclinic \;orbits \end{array}$
$Case \; ( VIII)$ $\begin{array}{l} K<1, \beta=1 \end{array}$ $\begin{array}{ll} \alpha>\alpha_{sn} \;\;\;\;\;none\\ 0 <\alpha<\alpha_{sn}\;\;\;\;\;E_1^*, E_2^* \end{array}$ $\begin{array}{l} saddle-node\;Hopf \end{array}$ $\begin{array}{l} open\; ended \end{array}$ $\begin{array}{l} a\; homoclinic \;cycle \end{array}$
$ Case$ $Condition$ $\begin{array}{l} Interior \;equilibria \end{array}$ $\begin{array}{l} Type\; of\\Bifurcation \end{array}$ $\begin{array}{l} Shape\; of\; Hopf\;branch \end{array}$ $\begin{array}{l} Periodic \;orbits \; disappear \;through \end{array}$
$Case \;(V)$ $\begin{array}{l} K=1, \beta>1 \end{array}$ $\begin{array}{ll} \alpha<\alpha_s\;\;\;\;\;none\\\alpha>\alpha_s\;\;\;\;\;E_1^* \end{array}$ $Hopf$ $\begin{array}{l} open\; ended\end{array}$ $\begin{array}{l} a \;loop\;of\; heteroclinic \;orbits \end{array}$
$Case \; (VI-i)$ $\begin{array}{l} K=1, \beta<1\\c>c_1 \end{array}$ $\begin{array}{ll} \alpha>\alpha_{sn} \;\;\;\;\;none\\ 0 <\alpha<\alpha_{sn}\;\;\;\;\;E_1^*, E_2^* \end{array}$ $\begin{array}{l} saddle-node\; \\ Hopf \end{array}$ $\begin{array}{l} open\; ended \end{array}$ $\begin{array}{l} a\; homoclinic \;cycle \end{array}$
$Case \; (VI-ii)$ $\begin{array}{l} K=1, \beta<1\\c<c_1 \end{array}$ $none$ $none$ $none$ $none$
$ Case \; (VII)$ $\begin{array}{l} K>1, \beta=1 \end{array}$ $\begin{array}{ll} \alpha>0\;\;\;\;\;E_1^* \end{array}$ $\begin{array}{l} Hopf \end{array}$ $\begin{array}{l} open\; ended\end{array}$ $\begin{array}{l} a\; homoclinic \;cycle \; or \; a \;loop \; of \; heteroclinic \;orbits \end{array}$
$Case \; ( VIII)$ $\begin{array}{l} K<1, \beta=1 \end{array}$ $\begin{array}{ll} \alpha>\alpha_{sn} \;\;\;\;\;none\\ 0 <\alpha<\alpha_{sn}\;\;\;\;\;E_1^*, E_2^* \end{array}$ $\begin{array}{l} saddle-node\;Hopf \end{array}$ $\begin{array}{l} open\; ended \end{array}$ $\begin{array}{l} a\; homoclinic \;cycle \end{array}$
[1]

Bing Zeng, Shengfu Deng, Pei Yu. Bogdanov-Takens bifurcation in predator-prey systems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3253-3269. doi: 10.3934/dcdss.2020130

[2]

Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041

[3]

Min Lu, Chuang Xiang, Jicai Huang. Bogdanov-Takens bifurcation in a SIRS epidemic model with a generalized nonmonotone incidence rate. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3125-3138. doi: 10.3934/dcdss.2020115

[4]

Hebai Chen, Xingwu Chen, Jianhua Xie. Global phase portrait of a degenerate Bogdanov-Takens system with symmetry. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1273-1293. doi: 10.3934/dcdsb.2017062

[5]

Hebai Chen, Xingwu Chen. Global phase portraits of a degenerate Bogdanov-Takens system with symmetry (Ⅱ). Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4141-4170. doi: 10.3934/dcdsb.2018130

[6]

Fátima Drubi, Santiago Ibáñez, David Rivela. Chaotic behavior in the unfolding of Hopf-Bogdanov-Takens singularities. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 599-615. doi: 10.3934/dcdsb.2019256

[7]

Qiuyan Zhang, Lingling Liu, Weinian Zhang. Bogdanov-Takens bifurcations in the enzyme-catalyzed reaction comprising a branched network. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1499-1514. doi: 10.3934/mbe.2017078

[8]

Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete & Continuous Dynamical Systems, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997

[9]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[10]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[11]

Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152

[12]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[13]

Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, 2021, 29 (5) : 3069-3079. doi: 10.3934/era.2021026

[14]

Fernando Antoneli, Ana Paula S. Dias, Rui Paiva. Coupled cell networks: Hopf bifurcation and interior symmetry. Conference Publications, 2011, 2011 (Special) : 71-78. doi: 10.3934/proc.2011.2011.71

[15]

R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure & Applied Analysis, 2003, 2 (2) : 147-158. doi: 10.3934/cpaa.2003.2.147

[16]

Fatihcan M. Atay. Delayed feedback control near Hopf bifurcation. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 197-205. doi: 10.3934/dcdss.2008.1.197

[17]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[18]

Begoña Alarcón, Víctor Guíñez, Carlos Gutierrez. Hopf bifurcation at infinity for planar vector fields. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 247-258. doi: 10.3934/dcds.2007.17.247

[19]

Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098

[20]

Zhihua Liu, Rong Yuan. Takens–Bogdanov singularity for age structured models. Discrete & Continuous Dynamical Systems - B, 2020, 25 (6) : 2041-2056. doi: 10.3934/dcdsb.2019201

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (109)
  • HTML views (49)
  • Cited by (0)

Other articles
by authors

[Back to Top]