[1]
|
V. Ajraldi, M. Pittavino and E. Venturino, Modeling herd behavior in population systems, Nonlinear Anal. RWA, 12 (2011), 2319-2338.
doi: 10.1016/j.nonrwa.2011.02.002.
|
[2]
|
V. Ajraldi, E. Venturino and B. Wade, Mimicking spatial effects in predator-prey models with group defense, Proc. Int. Conf. CMMSE, 1 (2009), 57-66.
|
[3]
|
Q. An and W. H. Jiang, Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 487-510.
doi: 10.3934/dcdsb.2018183.
|
[4]
|
M. T. Alves and F. M. Hilker, Hunting cooperation and Allee effects in predators, J. Theor. Biol., 419 (2017), 13-22.
doi: 10.1016/j.jtbi.2017.02.002.
|
[5]
|
L. Berec, Impacts of foraging facilitation among predators on predator-prey dynamics, Bull. Math. Biol., 72 (2010), 94-121.
doi: 10.1007/s11538-009-9439-1.
|
[6]
|
C. Boesch, Cooperative hunting in wild chimpanzees, Anim. Behav., 48 (1994), 653-667.
doi: 10.1006/anbe.1994.1285.
|
[7]
|
P. A. Braza, Predator-prey dynamics with square root functional responses, Nonlinear Anal. RWA, 13 (2012), 1837-1843.
doi: 10.1016/j.nonrwa.2011.12.014.
|
[8]
|
R. Bshary, A. Hohner, K. Ait-el-Djoudi and H. Fricke, Interspecific communicative and coordinated hunting between groupers and giant moray eels in the Red Sea, PLoS Biol., 4 (2006).
doi: 10.1371/journal.pbio.0040431.
|
[9]
|
I. M. Bulai and E. Venturino, Shape effects on herd behavior in ecological interacting population models, Math. Comput. Simulation, 141 (2017), 40-55.
doi: 10.1016/j.matcom.2017.04.009.
|
[10]
|
C. Cosner, D. L. DeAngelis, J. S. Ault and D. B. Olson, Effects of spatial grouping on the functional response of predators, Theor. Popul. Biol., 56 (1999), 65-75.
doi: 10.1006/tpbi.1999.1414.
|
[11]
|
F. Courchamp and D. W. Macdonald, Crucial importance of pack size in the African wild dog Lycaon pictus, Anim. Conserv., 4 (2001), 169-174.
doi: 10.1017/S1367943001001196.
|
[12]
|
A. Dhooge, W. Govaerts and Y. A. Kuznetsov, MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Softw., 29 (2003), 141-164.
doi: 10.1145/779359.779362.
|
[13]
|
S. Djilali, Impact of prey herd shape on the predator-prey interaction, Chaos Solitons Fractals, 120 (2019), 139-148.
doi: 10.1016/j.chaos.2019.01.022.
|
[14]
|
L. A. Dugatkin, Cooperation Among Animals: An Evolutionary Perspective, Oxford University Press, Oxford, 1997.
|
[15]
|
H. I. Freedman and G. S. K. Wolkowicz, Predator-prey systems with group defence: The paradox of enrichment revisited, Bull. Math. Biol., 48 (1986), 493-508.
|
[16]
|
D. P. Hector, Cooperative hunting and its relationship to foraging success and prey size in an avian predator, Ethology, 73 (1986), 247-257.
doi: 10.1111/j.1439-0310.1986.tb00915.x.
|
[17]
|
C. S. Holling, The components of predation as revealed by a study of small-mammal predation of the European pine sawfly, Can. Entomol., 91 (1959), 293-320.
doi: 10.4039/Ent91293-5.
|
[18]
|
J. C. Holmes and W. M. Bethel, Modification of intermediate host behavior by parasites, Zoolog J. Linnean Soc., 51 (1972), 123-149.
|
[19]
|
S. R. J. Jang, W. Zhang and V. Larriva, Cooperative hunting in a predator-prey system with Allee effects in the prey, Nat. Resour. Model, 31 (2018), 12194.
doi: 10.1111/nrm.12194.
|
[20]
|
N. D. Kazarinov and P. V. D. Driessche, A model predator-prey system with functional response, Math. Biosci., 39 (1978), 125-134.
doi: 10.1016/0025-5564(78)90031-7.
|
[21]
|
M. C. Khnke, I. Siekmann and H. Malchow, Taxis-driven pattern formation in a predator-prey model with group defense, Ecol. Complex., 43 (2020), 100848.
doi: 10.1016/j.ecocom.2020.100848.
|
[22]
|
B. W. Kooi and E. Venturino, Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey, Math. Biosci., 274 (2016), 58-72.
doi: 10.1016/j.mbs.2016.02.003.
|
[23]
|
Y. A. Kuznetsov, Element of Applied Bifurcation Theory, 2$^{nd}$ edition, Springer-Verlag, New York, 1998.
|
[24]
|
M. W. Moffett, Foraging dynamics in the group-hunting myrmicine ant, pheidologeton diversus, J. Insect. Behav., 1 (1988), 309-331.
doi: 10.1007/BF01054528.
|
[25]
|
S. Pal, N. Pal, S. Samanta and J. Chattopadhyay, Effect of hunting cooperation and fear in a predator-prey model, Ecol. Complex, 39 (2019), 100770.
doi: 10.1016/j.ecocom.2019.100770.
|
[26]
|
J. A. Polking and D. Arnold, Ordinary Differential Equations Using MATLAB, Prentice-Hall, Englewood Cliffs, 2003.
|
[27]
|
S. N. Raw, P. Mishra, R. Kumar and S. Thakur, Complex behavior of prey-predator system exhibiting group defense: A mathematical modeling study, Chaos Soliton Fract., 100 (2017), 74-90.
doi: 10.1016/j.chaos.2017.05.010.
|
[28]
|
D. Scheel and C. Packer, Group hunting behavioir of lions: A search for cooperation, Anim. Behav., 41 (1991), 697-709.
doi: 10.1016/S0003-3472(05)80907-8.
|
[29]
|
P. A. Schmidt and L. D. Mech, Wolf pack size and food acquisition, Am. Nat., 150 (1997), 513-517.
doi: 10.1086/286079.
|
[30]
|
D. Sen, S. Ghorai and M. Banerjee, Allee effect in prey versus hunting cooperation on predator-enhancement of stable coexistence, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1950081.
doi: 10.1142/S0218127419500810.
|
[31]
|
D. Song, C. Li and Y. Song, Stability and cross-diffusion-driven instability in a diffusive predator-prey system with hunting cooperation functional response, Nonlinear Anal. RWA, 54 (2020), 103106.
doi: 10.1016/j.nonrwa.2020.103106.
|
[32]
|
Y. Song, Y. Peng and T. Zhang, The spatially inhomogeneous Hopf bifurcation induced by memory delay in a memory-based diffusion system, J. Differential Equations, 300 (2021), 597-624.
doi: 10.1016/j.jde.2021.08.010.
|
[33]
|
Y. Song, J. Shi and H. Wang, Spatiotemporal dynamics of a diffusive consumer-resource model with explicit spatial memory, Stud. Appl. Math., (2021), 1–23
doi: 10.1111/sapm.12443.
|
[34]
|
J. S. Tener, Muskoxen, , Queen's Printer, Ottawa, 1995.
|
[35]
|
G. W. Uetz, Foraging strategies of spiders, Trends. Ecol. Evol., 7 (1992), 155-159.
doi: 10.1016/0169-5347(92)90209-T.
|
[36]
|
E. Venturino and S. Petrovskii, Spatiotemporal behavior of a prey-predator system with a group defense for prey, Ecol. Complex, 14 (2013), 37-47.
doi: 10.1016/j.ecocom.2013.01.004.
|
[37]
|
S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2$^{nd}$ edition, Springer-Verlag, New York, 2003.
|
[38]
|
D. Wu and M. Zhao, Qualitative analysis for a diffusive predator-prey model with hunting cooperative, Physica A, 515 (2019), 299-309.
doi: 10.1016/j.physa.2018.09.176.
|
[39]
|
Z. Xu and Y. Song, Bifurcation analysis of a diffusive predator-prey system with a herd behavior and quadratic mortality, Math. Method Appl. Sci., 38 (2015), 2994-3006.
doi: 10.1002/mma.3275.
|
[40]
|
C. Xu, S. Yuan and T. Zhang, Global dynamics of a predator-prey model with defense mechanism for prey, Appl. Math. Lett., 62 (2016), 42-48.
doi: 10.1016/j.aml.2016.06.013.
|
[41]
|
S. Yan, D. Jia, T. Zhang and S. Yuan, Pattern dynamics in a diffusive predator-prey model with hunting cooperations, Chaos Solitons Fract., 130 (2020), 109428.
doi: 10.1016/j.chaos.2019.109428.
|
[42]
|
H. Yin and X. Wen, Hopf bifurcation of a diffusive Gause-type predator-prey model induced by time fractional-order derivatives, Math. Method Appl. Sci., 41 (2018), 5178-5189.
doi: 10.1002/mma.5066.
|
[43]
|
S. Yuan, C. Xu and T. Zhang, Spatial dynamics in a predator-prey model with herd behavior, Chaos, 23 (2013), 033102.
doi: 10.1063/1.4812724.
|