doi: 10.3934/dcdsb.2021302
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Global dynamics of a Huanglongbing model with a periodic latent period

School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, China

*Corresponding author: Xiao Yu

Received  July 2021 Revised  September 2021 Early access December 2021

Fund Project: The third author is supported in part by the National Natural Science Foundation of China; and Guangdong Basic and Applied Basic Research Foundation Province (12001205, 12026602 and 2019A1515110179)

Huanglongbing (HLB) is a disease of citrus that caused by phloem-restricted bacteria of the Candidatus Liberibacter group. In this paper, we present a HLB transmission model to investigate the effects of temperature-dependent latent periods and seasonality on the spread of HLB. We first establish disease free dynamics in terms of a threshold value $ R^p_0 $, and then introduce the basic reproduction number $ \mathcal{R}_0 $ and show the threshold dynamics of HLB with respect to $ R^p $ and $ \mathcal{R}_0 $. Numerical simulations are further provided to illustrate our analytic results.

Citation: Yan Hong, Xiuxiang Liu, Xiao Yu. Global dynamics of a Huanglongbing model with a periodic latent period. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021302
References:
[1]

J. M. Bové, Huanglongbing: Adestructive, newly-emerging, century-old disease of citrus, J. Plant Pathol., 88 (2006), 7-37.   Google Scholar

[2]

L. CaiX. LiB. Fang and S. Ruan, Global properties of vector-host disease models with time delays, J. Math. Biol., 74 (2017), 1397-1423.  doi: 10.1007/s00285-016-1047-8.  Google Scholar

[3]

C. ChiyakaB. H. SingerS. E. HalbertJ. G. Morris and A. H. C. van Bruggen, Modeling huanglongbing transmission within a citrus tree, PNAS, 109 (2012), 12213-12218.  doi: 10.1073/pnas.1208326109.  Google Scholar

[4]

K.-R. Chung and R. H. Brlansky, Citrus diseases exotic to Florida: Huanglongbing (citrus greening), Institute of Food and Agricultural Sciences, 7 (2005), 210.  doi: 10.32473/edis-pp133-2005.  Google Scholar

[5]

H. I. Freedman and J. Wu, Periodic solutions of single-spaces models with periodic delay, SIAM J. Math. Anal., 23 (1992), 689-701.  doi: 10.1137/0523035.  Google Scholar

[6]

S. GaoD. YuX. Meng and F. Zhang, Global dynamics of a stage-structured Huanglongbing model with time delay, Chaos Solitons Fractals, 117 (2018), 60-67.  doi: 10.1016/j.chaos.2018.10.008.  Google Scholar

[7]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[8]

D. G. Hall and M. G. Hentz, Seasonal flight activity by the Asian citrus psyllid in east central Florida, Entomologia et Applicata., 139 (2011), 75-85.  doi: 10.1111/j.1570-7458.2011.01108.x.  Google Scholar

[9]

K. JacobsenJ. Stupiansky and S. S. Pilyugin, Mathematical modelling of citrus groves infected by huanglongbing, Math. Bioscien. Engine., 10 (2013), 705-728.  doi: 10.3934/mbe.2013.10.705.  Google Scholar

[10]

J. A. LeeS. E. HalbertW. O. DawsonC. J. RobertsonJ. E. Keesling and B. H. Singer, Asymptomatic spread of huanglongbing and implications for disease control, PNAS, 112 (2015), 7605-7610.  doi: 10.1073/pnas.1508253112.  Google Scholar

[11]

F. LiJ. Liu and X.-Q. Zhao, A West Nile virus model with vertical transmission and periodic time delays, J. Nonlinear Sci., 30 (2020), 449-486.  doi: 10.1007/s00332-019-09579-8.  Google Scholar

[12]

X. LiangL. Zhang and X.-Q. Zhao, The principal eigenvalue for periodic nonlocal dispersal systems with time delay, J. Dynam. Diff. Eqns., 266 (2019), 2100-2124.  doi: 10.1016/j.jde.2018.08.022.  Google Scholar

[13]

Y. Liu and J. H. Tsal, Effects of temperature on biology and life table parameters of the Asian citrus psyllid, Diaphorina citri Kuwayama (Homoptera: Psyllidae), Ann. appl. Biol., 137 (2000), 201-206.  doi: 10.1111/j.1744-7348.2000.tb00060.x.  Google Scholar

[14]

Y. Lou and X.-Q. Zhao, A theoretical approach to understanding population dynamics with seasonal developmental durations, J. Nonlinear Sci., 27 (2017), 573-603.  doi: 10.1007/s00332-016-9344-3.  Google Scholar

[15]

S. A. LopesF. LuizE. C. MartinsC. G. FassiniM. C. SousaJ. C. Barbosa and A. Beattie, Candidatus liberibacter asiaticus' titers in citrus and acquisition rates by diaphorina citri are decreased by higher temperature, Plant Disease, 97 (2013), 1563-1570.  doi: 10.1094/PDIS-11-12-1031-RE.  Google Scholar

[16]

Q. LuB. Yan and D. Zhao, Temporal and spatial variation characteristics of climate in Jiangxi Province from 1961 to 2016, Research of soil and water conservation, 26 (2019), 166-173.   Google Scholar

[17]

L. LuoS. GaoY. Ge and Y. Luo, Transmission dynamics of a Huanglongbing model with cross protection, Adv. Difference Equ., 355 (2017), 1-21.  doi: 10.1186/s13662-017-1392-y.  Google Scholar

[18]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.  Google Scholar

[19]

S. MunirY. LiP. HeP. HeP. HeW. CuiY. WuX. Li and Y. He, Seasonal variation and detection frequency of Candidatus Liberibacter asiaticus in Binchuan, Yunnan province China, Physiological and Molecular Plant Pathology, 106 (2019), 137-144.  doi: 10.1016/j.pmpp.2019.01.004.  Google Scholar

[20]

T. Nakatat, Temperature-dependent development of the citrus psyllid, Diaphorina citri (Homoptera: Psylloidea), and the predicted limit of its spread based on overwintering in the nymphal stage in temperate regions of Japan, Appl. Entomol. Zool., 41 (2006), 383-387.   Google Scholar

[21]

R. Omori and B. Adams, Disrupting seasonality to control disease outbreaks: The case of koi herpes virus, J. Theoret. Biol., 271 (2011), 159-165.  doi: 10.1016/j.jtbi.2010.12.004.  Google Scholar

[22]

M. ParryG. J. GibsonS. ParnellT. R. GottwaldM. S. IreyT. C. Gast and C. A. Gilligan, Bayesian inference for an emerging arboreal epidemic in the presence of control, PNAS, 111 (2014), 6258-6262.  doi: 10.1073/pnas.1310997111.  Google Scholar

[23]

M. QasimY. LinC. K. DashB. S. BamisileK. RavindranS. U. IslamH. AliF. Wang and L. Wang, Temperature-dependent development of Asian citrus psyllid on various hosts, and mortality by two strains of Isaria, Microbial Pathogenesis, 119 (2018), 109-118.  doi: 10.1016/j.micpath.2018.04.019.  Google Scholar

[24]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41. American Mathematical Society, Providence, RI, 1995.  Google Scholar

[25]

R. A. TaylorE. A. MordecaiC. A. GilliganJ. R. Rohr and L. R. Johnson, Mathematical models are a powerful method to understand and control the spread of Huanglongbing, PeerJ, 4 (2016), 2315-2319.  doi: 10.7717/peerj.2642.  Google Scholar

[26]

R. G. d'A. VilamiuS. TernesG. A. Braga and F. F. Laranjeira, A model for Huanglongbing spread between citrus plants including delay times and human intervention, AIP Conf. Proc., 1479 (2012), 2315-2319.  doi: 10.1063/1.4756657.  Google Scholar

[27]

F. WangR. Wu and X.-Q. Zhao, A West Nile virus transmission model with periodic incubation periods, SIAM J. Appl. Dyn. Syst., 18 (2019), 1498-1535.  doi: 10.1137/18M1236162.  Google Scholar

[28]

X. Wang and X.-Q. Zhao, A malaria transmission model with temperature-dependent incubation period, Bull. Math. Biol., 79 (2017), 1155-1182.  doi: 10.1007/s11538-017-0276-3.  Google Scholar

[29]

J. WangS. GaoY. Luo and D. Xie, Threshold dynamics of a huanglongbing model with logistic growth in periodic environments, Abstr. Appl. Anal., 2014 (2014), 1-10.  doi: 10.1155/2014/841367.  Google Scholar

[30]

X. WuF. M. G. MagpantayJ. Wu and X. Zou, Stage-structured population systems with temporally periodic delay, Math. Methods Appl. Sci., 38 (2015), 3464-3481.  doi: 10.1002/mma.3424.  Google Scholar

[31]

D. Xu and X.-Q. Zhao, Dynamics in a periodic competitive model with stage structure, J. Math. Anal. Appl., 311 (2005), 417-438.  doi: 10.1016/j.jmaa.2005.02.062.  Google Scholar

[32]

X.-Q. Zhao, Dynamical Systems in Population Biology, 2$^{nd}$ edition, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Cham, 2017. doi: 10.1007/978-3-319-56433-3.  Google Scholar

[33]

X.-Q. Zhao, Basic reproduction ratios for periodic compartmental models with time delay, J. Dynam. Diff. Eqns., 29 (2017), 67-82.  doi: 10.1007/s10884-015-9425-2.  Google Scholar

show all references

References:
[1]

J. M. Bové, Huanglongbing: Adestructive, newly-emerging, century-old disease of citrus, J. Plant Pathol., 88 (2006), 7-37.   Google Scholar

[2]

L. CaiX. LiB. Fang and S. Ruan, Global properties of vector-host disease models with time delays, J. Math. Biol., 74 (2017), 1397-1423.  doi: 10.1007/s00285-016-1047-8.  Google Scholar

[3]

C. ChiyakaB. H. SingerS. E. HalbertJ. G. Morris and A. H. C. van Bruggen, Modeling huanglongbing transmission within a citrus tree, PNAS, 109 (2012), 12213-12218.  doi: 10.1073/pnas.1208326109.  Google Scholar

[4]

K.-R. Chung and R. H. Brlansky, Citrus diseases exotic to Florida: Huanglongbing (citrus greening), Institute of Food and Agricultural Sciences, 7 (2005), 210.  doi: 10.32473/edis-pp133-2005.  Google Scholar

[5]

H. I. Freedman and J. Wu, Periodic solutions of single-spaces models with periodic delay, SIAM J. Math. Anal., 23 (1992), 689-701.  doi: 10.1137/0523035.  Google Scholar

[6]

S. GaoD. YuX. Meng and F. Zhang, Global dynamics of a stage-structured Huanglongbing model with time delay, Chaos Solitons Fractals, 117 (2018), 60-67.  doi: 10.1016/j.chaos.2018.10.008.  Google Scholar

[7]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[8]

D. G. Hall and M. G. Hentz, Seasonal flight activity by the Asian citrus psyllid in east central Florida, Entomologia et Applicata., 139 (2011), 75-85.  doi: 10.1111/j.1570-7458.2011.01108.x.  Google Scholar

[9]

K. JacobsenJ. Stupiansky and S. S. Pilyugin, Mathematical modelling of citrus groves infected by huanglongbing, Math. Bioscien. Engine., 10 (2013), 705-728.  doi: 10.3934/mbe.2013.10.705.  Google Scholar

[10]

J. A. LeeS. E. HalbertW. O. DawsonC. J. RobertsonJ. E. Keesling and B. H. Singer, Asymptomatic spread of huanglongbing and implications for disease control, PNAS, 112 (2015), 7605-7610.  doi: 10.1073/pnas.1508253112.  Google Scholar

[11]

F. LiJ. Liu and X.-Q. Zhao, A West Nile virus model with vertical transmission and periodic time delays, J. Nonlinear Sci., 30 (2020), 449-486.  doi: 10.1007/s00332-019-09579-8.  Google Scholar

[12]

X. LiangL. Zhang and X.-Q. Zhao, The principal eigenvalue for periodic nonlocal dispersal systems with time delay, J. Dynam. Diff. Eqns., 266 (2019), 2100-2124.  doi: 10.1016/j.jde.2018.08.022.  Google Scholar

[13]

Y. Liu and J. H. Tsal, Effects of temperature on biology and life table parameters of the Asian citrus psyllid, Diaphorina citri Kuwayama (Homoptera: Psyllidae), Ann. appl. Biol., 137 (2000), 201-206.  doi: 10.1111/j.1744-7348.2000.tb00060.x.  Google Scholar

[14]

Y. Lou and X.-Q. Zhao, A theoretical approach to understanding population dynamics with seasonal developmental durations, J. Nonlinear Sci., 27 (2017), 573-603.  doi: 10.1007/s00332-016-9344-3.  Google Scholar

[15]

S. A. LopesF. LuizE. C. MartinsC. G. FassiniM. C. SousaJ. C. Barbosa and A. Beattie, Candidatus liberibacter asiaticus' titers in citrus and acquisition rates by diaphorina citri are decreased by higher temperature, Plant Disease, 97 (2013), 1563-1570.  doi: 10.1094/PDIS-11-12-1031-RE.  Google Scholar

[16]

Q. LuB. Yan and D. Zhao, Temporal and spatial variation characteristics of climate in Jiangxi Province from 1961 to 2016, Research of soil and water conservation, 26 (2019), 166-173.   Google Scholar

[17]

L. LuoS. GaoY. Ge and Y. Luo, Transmission dynamics of a Huanglongbing model with cross protection, Adv. Difference Equ., 355 (2017), 1-21.  doi: 10.1186/s13662-017-1392-y.  Google Scholar

[18]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.  Google Scholar

[19]

S. MunirY. LiP. HeP. HeP. HeW. CuiY. WuX. Li and Y. He, Seasonal variation and detection frequency of Candidatus Liberibacter asiaticus in Binchuan, Yunnan province China, Physiological and Molecular Plant Pathology, 106 (2019), 137-144.  doi: 10.1016/j.pmpp.2019.01.004.  Google Scholar

[20]

T. Nakatat, Temperature-dependent development of the citrus psyllid, Diaphorina citri (Homoptera: Psylloidea), and the predicted limit of its spread based on overwintering in the nymphal stage in temperate regions of Japan, Appl. Entomol. Zool., 41 (2006), 383-387.   Google Scholar

[21]

R. Omori and B. Adams, Disrupting seasonality to control disease outbreaks: The case of koi herpes virus, J. Theoret. Biol., 271 (2011), 159-165.  doi: 10.1016/j.jtbi.2010.12.004.  Google Scholar

[22]

M. ParryG. J. GibsonS. ParnellT. R. GottwaldM. S. IreyT. C. Gast and C. A. Gilligan, Bayesian inference for an emerging arboreal epidemic in the presence of control, PNAS, 111 (2014), 6258-6262.  doi: 10.1073/pnas.1310997111.  Google Scholar

[23]

M. QasimY. LinC. K. DashB. S. BamisileK. RavindranS. U. IslamH. AliF. Wang and L. Wang, Temperature-dependent development of Asian citrus psyllid on various hosts, and mortality by two strains of Isaria, Microbial Pathogenesis, 119 (2018), 109-118.  doi: 10.1016/j.micpath.2018.04.019.  Google Scholar

[24]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41. American Mathematical Society, Providence, RI, 1995.  Google Scholar

[25]

R. A. TaylorE. A. MordecaiC. A. GilliganJ. R. Rohr and L. R. Johnson, Mathematical models are a powerful method to understand and control the spread of Huanglongbing, PeerJ, 4 (2016), 2315-2319.  doi: 10.7717/peerj.2642.  Google Scholar

[26]

R. G. d'A. VilamiuS. TernesG. A. Braga and F. F. Laranjeira, A model for Huanglongbing spread between citrus plants including delay times and human intervention, AIP Conf. Proc., 1479 (2012), 2315-2319.  doi: 10.1063/1.4756657.  Google Scholar

[27]

F. WangR. Wu and X.-Q. Zhao, A West Nile virus transmission model with periodic incubation periods, SIAM J. Appl. Dyn. Syst., 18 (2019), 1498-1535.  doi: 10.1137/18M1236162.  Google Scholar

[28]

X. Wang and X.-Q. Zhao, A malaria transmission model with temperature-dependent incubation period, Bull. Math. Biol., 79 (2017), 1155-1182.  doi: 10.1007/s11538-017-0276-3.  Google Scholar

[29]

J. WangS. GaoY. Luo and D. Xie, Threshold dynamics of a huanglongbing model with logistic growth in periodic environments, Abstr. Appl. Anal., 2014 (2014), 1-10.  doi: 10.1155/2014/841367.  Google Scholar

[30]

X. WuF. M. G. MagpantayJ. Wu and X. Zou, Stage-structured population systems with temporally periodic delay, Math. Methods Appl. Sci., 38 (2015), 3464-3481.  doi: 10.1002/mma.3424.  Google Scholar

[31]

D. Xu and X.-Q. Zhao, Dynamics in a periodic competitive model with stage structure, J. Math. Anal. Appl., 311 (2005), 417-438.  doi: 10.1016/j.jmaa.2005.02.062.  Google Scholar

[32]

X.-Q. Zhao, Dynamical Systems in Population Biology, 2$^{nd}$ edition, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Cham, 2017. doi: 10.1007/978-3-319-56433-3.  Google Scholar

[33]

X.-Q. Zhao, Basic reproduction ratios for periodic compartmental models with time delay, J. Dynam. Diff. Eqns., 29 (2017), 67-82.  doi: 10.1007/s10884-015-9425-2.  Google Scholar

Figure 1.  Tendency of citrus trees when $ \mathcal{R}_0<1 $ and $ \mathcal{R}_0>1 $
Figure 2.  Behaviors of psyllid when $ \mathcal{R}_0<1 $ and $ \mathcal{R}_0>1 $
Figure 3.  infectious psyllid under different $ p $ and $ q $
Figure 4.  $ \mathcal{R}_0 $ vs r
Table 1.  Biological interpretations for parameters in system (1)
Parameter Description
$ r $ Rate of replanting citrus tree
$ K $ Maximum citrus tree population size
$ \beta_1(t) $ Infection rate of susceptible trees
$ \mu_1 $ Natural death rate of citrus tree population
$ \delta_1 $ Death rate of infected trees
$ \delta_2 $ Rate of removal of infected trees
$ \alpha(t) $ Intrinsic growth rate of psyllid
$ m $ Maximum abundance of psyllid per tree
$ d_v(t) $ Natural death rate of psyllid population
$ \beta_2(t) $ Infection rate of susceptible psyllid
$ \theta(t) $ Killing rate of psyllid with spraying insecticide
$ \tau $ Incubation period in trees
$ \tau_v(t) $ Extrinsic incubation period(EIP) of psyllid
Parameter Description
$ r $ Rate of replanting citrus tree
$ K $ Maximum citrus tree population size
$ \beta_1(t) $ Infection rate of susceptible trees
$ \mu_1 $ Natural death rate of citrus tree population
$ \delta_1 $ Death rate of infected trees
$ \delta_2 $ Rate of removal of infected trees
$ \alpha(t) $ Intrinsic growth rate of psyllid
$ m $ Maximum abundance of psyllid per tree
$ d_v(t) $ Natural death rate of psyllid population
$ \beta_2(t) $ Infection rate of susceptible psyllid
$ \theta(t) $ Killing rate of psyllid with spraying insecticide
$ \tau $ Incubation period in trees
$ \tau_v(t) $ Extrinsic incubation period(EIP) of psyllid
Table 2.  Parameter values in simulation
Parameter Value Unit Reference
$ r $ 0.05 month$ ^{-1} $ [17]
$ K $ 2000 - [17]
$ \beta_1(t) $ to be estimated month$ ^{-1} $ see text
$ \mu_1 $ 0.00333 month$ ^{-1} $ [29]
$ \delta_1 $ 0.0015 month$ ^{-1} $ [25]
$ \delta_2 $ 0.02 month$ ^{-1} $ [25]
$ \alpha(t) $ $ 18.120952 + 14.45466475\cos(2\pi t/12) $ month$ ^{-1} $ [29]
$ m $ $ 1\times 10^{6} $ - [29]
$ d_v(t) $ to be estimated month$ ^{-1} $ see text
$ \beta_2(t) $ to be estimated month$ ^{-1} $ see text
$ \theta(t) $ to be estimated month$ ^{-1} $ see text
$ \tau $ 6 month [25]
$ \tau_v(t) $ assumed month see text
Parameter Value Unit Reference
$ r $ 0.05 month$ ^{-1} $ [17]
$ K $ 2000 - [17]
$ \beta_1(t) $ to be estimated month$ ^{-1} $ see text
$ \mu_1 $ 0.00333 month$ ^{-1} $ [29]
$ \delta_1 $ 0.0015 month$ ^{-1} $ [25]
$ \delta_2 $ 0.02 month$ ^{-1} $ [25]
$ \alpha(t) $ $ 18.120952 + 14.45466475\cos(2\pi t/12) $ month$ ^{-1} $ [29]
$ m $ $ 1\times 10^{6} $ - [29]
$ d_v(t) $ to be estimated month$ ^{-1} $ see text
$ \beta_2(t) $ to be estimated month$ ^{-1} $ see text
$ \theta(t) $ to be estimated month$ ^{-1} $ see text
$ \tau $ 6 month [25]
$ \tau_v(t) $ assumed month see text
Table 3.  Monthly mean temperature in the South of Jiangxi, 1961-2016($ ^\circ C $)
Month Jan Feb Mar Apr May June
temperature 5.7 7.5 11.6 17.3 22.4 25.0
Month Jul Aug Sep Oct Nov Dec
temperature 28.3 27.6 24.5 19.2 13.2 7.4
Month Jan Feb Mar Apr May June
temperature 5.7 7.5 11.6 17.3 22.4 25.0
Month Jul Aug Sep Oct Nov Dec
temperature 28.3 27.6 24.5 19.2 13.2 7.4
[1]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[2]

Karly Jacobsen, Jillian Stupiansky, Sergei S. Pilyugin. Mathematical modeling of citrus groves infected by huanglongbing. Mathematical Biosciences & Engineering, 2013, 10 (3) : 705-728. doi: 10.3934/mbe.2013.10.705

[3]

Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166

[4]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[5]

Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID-19: A case study of India, Brazil and Peru. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021170

[6]

Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455

[7]

Kaifa Wang, Aijun Fan. Uniform persistence and periodic solution of chemostat-type model with antibiotic. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 789-795. doi: 10.3934/dcdsb.2004.4.789

[8]

Liang Kong, Tung Nguyen, Wenxian Shen. Effects of localized spatial variations on the uniform persistence and spreading speeds of time periodic two species competition systems. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1613-1636. doi: 10.3934/cpaa.2019077

[9]

Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, 2021, 20 (2) : 755-762. doi: 10.3934/cpaa.2020288

[10]

Yu Yang, Dongmei Xiao. Influence of latent period and nonlinear incidence rate on the dynamics of SIRS epidemiological models. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 195-211. doi: 10.3934/dcdsb.2010.13.195

[11]

Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239

[12]

Tianhui Yang, Ammar Qarariyah, Qigui Yang. The effect of spatial variables on the basic reproduction ratio for a reaction-diffusion epidemic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021170

[13]

Xuefeng San, Yuan He. Traveling waves for a two-group epidemic model with latent period and bilinear incidence in a patchy environment. Communications on Pure & Applied Analysis, 2021, 20 (10) : 3299-3318. doi: 10.3934/cpaa.2021106

[14]

Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences & Engineering, 2007, 4 (3) : 457-470. doi: 10.3934/mbe.2007.4.457

[15]

Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565

[16]

Paul L. Salceanu. Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents. Mathematical Biosciences & Engineering, 2011, 8 (3) : 807-825. doi: 10.3934/mbe.2011.8.807

[17]

Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041

[18]

Paul L. Salceanu. Robust uniform persistence for structured models of delay differential equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021258

[19]

Marcelo Marchesin. The mass dependence of the period of the periodic solutions of the Sitnikov problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 597-609. doi: 10.3934/dcdss.2008.1.597

[20]

P.E. Kloeden, Desheng Li, Chengkui Zhong. Uniform attractors of periodic and asymptotically periodic dynamical systems. Discrete & Continuous Dynamical Systems, 2005, 12 (2) : 213-232. doi: 10.3934/dcds.2005.12.213

2020 Impact Factor: 1.327

Article outline

Figures and Tables

[Back to Top]