In this paper, we define a renormalized dissipative measure-valued (rDMV) solution of the compressible magnetohydrodynamics (MHD) equations with non-monotone pressure law. We prove the existence of the rDMV solutions and establish a suitable relative energy inequality. And we obtain the weak (measure-valued)-strong uniqueness property of this rDMV solution with the help of the relative energy inequality.
Citation: |
[1] |
D. Bresch and P.-E. Jabin, Global existence of weak solutions for compressible Navier-Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor, Ann. of Math., 188 (2018), 577-684.
doi: 10.4007/annals.2018.188.2.4.![]() ![]() ![]() |
[2] |
J. Březina, E. Feireisl and A. Novotný, Stability of strong solutions to the Navier-Stokes-Fourier system, SIAM J. Math. Anal., 52 (2020), 1761-1785.
doi: 10.1137/18M1223022.![]() ![]() ![]() |
[3] |
H. Cabannes, Theoretical Magnetofluiddynamics, Academic Press, 1970.
![]() |
[4] |
T. Chang, B. J. Jin and A. Novotný, Compressible Navier-Stokes system with general inflow-out flow boundary data, SIAM J. Math. Anal., 51 (2019), 1238-1278.
doi: 10.1137/17M115089X.![]() ![]() ![]() |
[5] |
N. Chaudhuri, On weak-strong uniqueness for compressible Navier-Stokes system with general pressure laws, Nonlinear Anal. Real World Appl., 49 (2019), 250-267.
doi: 10.1016/j.nonrwa.2019.03.004.![]() ![]() ![]() |
[6] |
N. Chaudhuri, On weak (measure-valued)-strong uniqueness for compressible Navier-Stokes system with non-monotone pressure law, J. Math. Fluid Mech., 22 (2020), Paper No. 17, 13 pp.
doi: 10.1007/s00021-019-0465-y.![]() ![]() ![]() |
[7] |
G.-Q. Chen and D. Wang, Global solutions of nonlinear magnetohydrodynamics with large initial data, J. Differential Equations, 182 (2002), 344-376.
doi: 10.1006/jdeq.2001.4111.![]() ![]() ![]() |
[8] |
G.-Q. Chen and D. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamic equations, Z. Angew. Math. Phys., 54 (2003), 608-632.
doi: 10.1007/s00033-003-1017-z.![]() ![]() ![]() |
[9] |
R. J. Diperna, Measure-valued solutions to conservation laws, Arch. Ration. Mech. Anal., 88 (1985), 223-270.
doi: 10.1007/BF00752112.![]() ![]() ![]() |
[10] |
B. Ducomet and E. Feireisl, The equations of magnetohydrodynamics: on the interaction between matter and radiation in the evolution of gaseous stars, Comm. Math. Phys., 266 (2006), 595-629.
doi: 10.1007/s00220-006-0052-y.![]() ![]() ![]() |
[11] |
J. Fan, S. Jiang and G. Nakamura, Vanishing shear viscosity limit in the magnetohydrodynamic equations, Comm. Math. Phys., 270 (2007), 691-708.
doi: 10.1007/s00220-006-0167-1.![]() ![]() ![]() |
[12] |
D. Fang and T. Zhang, Compressible Navier-Stokes equations with vacuum state in the case of general pressure law, Math. Methods Appl. Sci., 29 (2006), 1081-1106.
doi: 10.1002/mma.708.![]() ![]() ![]() |
[13] |
E. Feireisl, On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable, Comment. Math. Univ. Carolin., 42 (2001), 83-98.
![]() ![]() |
[14] |
E. Feireisl, Compressible Navier-Stokes equations with a non-monotone pressure law, J. Differential Equations, 184 (2002), 97-108.
doi: 10.1006/jdeq.2001.4137.![]() ![]() ![]() |
[15] |
E. Feireisl, On weak-strong uniqueness for the compressible Navier-Stokes system with non-monotone pressure law, Comm. Partial Differential Equations, 44 (2019), 271-278.
doi: 10.1080/03605302.2018.1543319.![]() ![]() ![]() |
[16] |
E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda and E. Wiedemann, Dissipative measure-valued solutions to the compressible Navier-Stokes system, Calc. Var. Partial Differential Equations, 55 (2016), Art. 141, 20 pp.
doi: 10.1007/s00526-016-1089-1.![]() ![]() ![]() |
[17] |
E. Feireisl, B. J. Jin and A. Novotný, Relative entropies, suitable weak solutions and weak-strong uniqueness for the compressible Navier-Stokes system, J. Math. Fluid Mech., 14 (2012), 717-730.
doi: 10.1007/s00021-011-0091-9.![]() ![]() ![]() |
[18] |
E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.
doi: 10.1007/PL00000976.![]() ![]() ![]() |
[19] |
P. G. Fernández-Dalgo and O. Jarrín, Weak-strong uniqueness in weighted $L^2$ spaces and weak suitable solutions in local Morrey spaces for the MHD equations, J. Differential Equations, 271 (2021), 864-915.
doi: 10.1016/j.jde.2020.09.017.![]() ![]() ![]() |
[20] |
H. Freistühler and P. Szmolyan, Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves, SIAM J. Math. Anal., 26 (1995), 112-128.
doi: 10.1137/S0036141093247366.![]() ![]() ![]() |
[21] |
P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech., 13 (2011), 137-146.
doi: 10.1007/s00021-009-0006-1.![]() ![]() ![]() |
[22] |
P. Gwiazda, A. Świerczewska-Gwiazda and E. Wiedemann, Weak-strong uniqueness for measure-valued solutions of some compressible fluid models, Nonlinearity, 28 (2015), 3873-3890.
doi: 10.1088/0951-7715/28/11/3873.![]() ![]() ![]() |
[23] |
D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differential Equations, 120 (1995), 215-254.
doi: 10.1006/jdeq.1995.1111.![]() ![]() ![]() |
[24] |
D. Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data, Arch. Ration. Mech. Anal., 132 (1995), 1-14.
doi: 10.1007/BF00390346.![]() ![]() ![]() |
[25] |
D. Hoff and E. Tsyganov, Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics, Z. Angew. Math. Phys., 56 (2005), 791-804.
doi: 10.1007/s00033-005-4057-8.![]() ![]() ![]() |
[26] |
X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238.
doi: 10.1007/s00205-010-0295-9.![]() ![]() ![]() |
[27] |
P.-L. Lions, Mathematical Topics in Fluid Mechanics, vol. 2. Compressible Models, New York: The Clarendon Press; Oxford University Press, 1998.
![]() ![]() |
[28] |
Y. Liu and T. Zhang, Global weak solutions to a 2D compressible non-resistivity MHD system with non-monotone pressure law and nonconstant viscosity, J. Math. Anal. Appl., 502 (2021), Paper No. 125244, 38 pp.
doi: 10.1016/j.jmaa.2021.125244.![]() ![]() ![]() |
[29] |
J. Neustupa, Measure-valued solutions of the Euler and Navier-Stokes equations for compressible barotropic fluids, Math. Nachr., 163 (1993), 217-227.
doi: 10.1002/mana.19931630119.![]() ![]() ![]() |
[30] |
D. Wang, Large solutions to the initial-boundary value problem for planar magnetohydrodynamics, SIAM J. Appl. Math., 63 (2003), 1424-1441.
doi: 10.1137/S0036139902409284.![]() ![]() ![]() |
[31] |
W. Yan, On weak-strong uniqueness property for full compressible magnetohydrodynamics flows, Cent. Eur. J. Math., 11 (2013), 2005-2019.
doi: 10.2478/s11533-013-0297-6.![]() ![]() ![]() |
[32] |
Y.-F. Yang, C. Dou and Q. Ju, Weak-strong uniqueness property for the magnetohydrodynamic equations of three-dimensional compressible isentropic flows, Nonlinear Anal., 85 (2013), 23-30.
doi: 10.1016/j.na.2013.02.015.![]() ![]() ![]() |