• Previous Article
    Modelling the effects of ozone concentration and pulse vaccination on seasonal influenza outbreaks in Gansu Province, China
  • DCDS-B Home
  • This Issue
  • Next Article
    Qualitative analysis of a diffusive SEIR epidemic model with linear external source and asymptomatic infection in heterogeneous environment
doi: 10.3934/dcdsb.2021307
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

On weak (measure-valued)-strong uniqueness for compressible MHD system with non-monotone pressure law

School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China

* Corresponding author: Ting Zhang

Received  June 2021 Revised  November 2021 Early access January 2022

In this paper, we define a renormalized dissipative measure-valued (rDMV) solution of the compressible magnetohydrodynamics (MHD) equations with non-monotone pressure law. We prove the existence of the rDMV solutions and establish a suitable relative energy inequality. And we obtain the weak (measure-valued)-strong uniqueness property of this rDMV solution with the help of the relative energy inequality.

Citation: Yu Liu, Ting Zhang. On weak (measure-valued)-strong uniqueness for compressible MHD system with non-monotone pressure law. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021307
References:
[1]

D. Bresch and P.-E. Jabin, Global existence of weak solutions for compressible Navier-Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor, Ann. of Math., 188 (2018), 577-684.  doi: 10.4007/annals.2018.188.2.4.  Google Scholar

[2]

J. BřezinaE. Feireisl and A. Novotný, Stability of strong solutions to the Navier-Stokes-Fourier system, SIAM J. Math. Anal., 52 (2020), 1761-1785.  doi: 10.1137/18M1223022.  Google Scholar

[3]

H. Cabannes, Theoretical Magnetofluiddynamics, Academic Press, 1970. Google Scholar

[4]

T. ChangB. J. Jin and A. Novotný, Compressible Navier-Stokes system with general inflow-out flow boundary data, SIAM J. Math. Anal., 51 (2019), 1238-1278.  doi: 10.1137/17M115089X.  Google Scholar

[5]

N. Chaudhuri, On weak-strong uniqueness for compressible Navier-Stokes system with general pressure laws, Nonlinear Anal. Real World Appl., 49 (2019), 250-267.  doi: 10.1016/j.nonrwa.2019.03.004.  Google Scholar

[6]

N. Chaudhuri, On weak (measure-valued)-strong uniqueness for compressible Navier-Stokes system with non-monotone pressure law, J. Math. Fluid Mech., 22 (2020), Paper No. 17, 13 pp. doi: 10.1007/s00021-019-0465-y.  Google Scholar

[7]

G.-Q. Chen and D. Wang, Global solutions of nonlinear magnetohydrodynamics with large initial data, J. Differential Equations, 182 (2002), 344-376.  doi: 10.1006/jdeq.2001.4111.  Google Scholar

[8]

G.-Q. Chen and D. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamic equations, Z. Angew. Math. Phys., 54 (2003), 608-632.  doi: 10.1007/s00033-003-1017-z.  Google Scholar

[9]

R. J. Diperna, Measure-valued solutions to conservation laws, Arch. Ration. Mech. Anal., 88 (1985), 223-270.  doi: 10.1007/BF00752112.  Google Scholar

[10]

B. Ducomet and E. Feireisl, The equations of magnetohydrodynamics: on the interaction between matter and radiation in the evolution of gaseous stars, Comm. Math. Phys., 266 (2006), 595-629.  doi: 10.1007/s00220-006-0052-y.  Google Scholar

[11]

J. FanS. Jiang and G. Nakamura, Vanishing shear viscosity limit in the magnetohydrodynamic equations, Comm. Math. Phys., 270 (2007), 691-708.  doi: 10.1007/s00220-006-0167-1.  Google Scholar

[12]

D. Fang and T. Zhang, Compressible Navier-Stokes equations with vacuum state in the case of general pressure law, Math. Methods Appl. Sci., 29 (2006), 1081-1106.  doi: 10.1002/mma.708.  Google Scholar

[13]

E. Feireisl, On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable, Comment. Math. Univ. Carolin., 42 (2001), 83-98.   Google Scholar

[14]

E. Feireisl, Compressible Navier-Stokes equations with a non-monotone pressure law, J. Differential Equations, 184 (2002), 97-108.  doi: 10.1006/jdeq.2001.4137.  Google Scholar

[15]

E. Feireisl, On weak-strong uniqueness for the compressible Navier-Stokes system with non-monotone pressure law, Comm. Partial Differential Equations, 44 (2019), 271-278.  doi: 10.1080/03605302.2018.1543319.  Google Scholar

[16]

E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda and E. Wiedemann, Dissipative measure-valued solutions to the compressible Navier-Stokes system, Calc. Var. Partial Differential Equations, 55 (2016), Art. 141, 20 pp. doi: 10.1007/s00526-016-1089-1.  Google Scholar

[17]

E. FeireislB. J. Jin and A. Novotný, Relative entropies, suitable weak solutions and weak-strong uniqueness for the compressible Navier-Stokes system, J. Math. Fluid Mech., 14 (2012), 717-730.  doi: 10.1007/s00021-011-0091-9.  Google Scholar

[18]

E. FeireislA. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.  doi: 10.1007/PL00000976.  Google Scholar

[19]

P. G. Fernández-Dalgo and O. Jarrín, Weak-strong uniqueness in weighted $L^2$ spaces and weak suitable solutions in local Morrey spaces for the MHD equations, J. Differential Equations, 271 (2021), 864-915.  doi: 10.1016/j.jde.2020.09.017.  Google Scholar

[20]

H. Freistühler and P. Szmolyan, Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves, SIAM J. Math. Anal., 26 (1995), 112-128.  doi: 10.1137/S0036141093247366.  Google Scholar

[21]

P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech., 13 (2011), 137-146.  doi: 10.1007/s00021-009-0006-1.  Google Scholar

[22]

P. GwiazdaA. Świerczewska-Gwiazda and E. Wiedemann, Weak-strong uniqueness for measure-valued solutions of some compressible fluid models, Nonlinearity, 28 (2015), 3873-3890.  doi: 10.1088/0951-7715/28/11/3873.  Google Scholar

[23]

D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differential Equations, 120 (1995), 215-254.  doi: 10.1006/jdeq.1995.1111.  Google Scholar

[24]

D. Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data, Arch. Ration. Mech. Anal., 132 (1995), 1-14.  doi: 10.1007/BF00390346.  Google Scholar

[25]

D. Hoff and E. Tsyganov, Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics, Z. Angew. Math. Phys., 56 (2005), 791-804.  doi: 10.1007/s00033-005-4057-8.  Google Scholar

[26]

X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238.  doi: 10.1007/s00205-010-0295-9.  Google Scholar

[27] P.-L. Lions, Mathematical Topics in Fluid Mechanics, vol. 2. Compressible Models, New York: The Clarendon Press; Oxford University Press, 1998.   Google Scholar
[28]

Y. Liu and T. Zhang, Global weak solutions to a 2D compressible non-resistivity MHD system with non-monotone pressure law and nonconstant viscosity, J. Math. Anal. Appl., 502 (2021), Paper No. 125244, 38 pp. doi: 10.1016/j.jmaa.2021.125244.  Google Scholar

[29]

J. Neustupa, Measure-valued solutions of the Euler and Navier-Stokes equations for compressible barotropic fluids, Math. Nachr., 163 (1993), 217-227.  doi: 10.1002/mana.19931630119.  Google Scholar

[30]

D. Wang, Large solutions to the initial-boundary value problem for planar magnetohydrodynamics, SIAM J. Appl. Math., 63 (2003), 1424-1441.  doi: 10.1137/S0036139902409284.  Google Scholar

[31]

W. Yan, On weak-strong uniqueness property for full compressible magnetohydrodynamics flows, Cent. Eur. J. Math., 11 (2013), 2005-2019.  doi: 10.2478/s11533-013-0297-6.  Google Scholar

[32]

Y.-F. YangC. Dou and Q. Ju, Weak-strong uniqueness property for the magnetohydrodynamic equations of three-dimensional compressible isentropic flows, Nonlinear Anal., 85 (2013), 23-30.  doi: 10.1016/j.na.2013.02.015.  Google Scholar

show all references

References:
[1]

D. Bresch and P.-E. Jabin, Global existence of weak solutions for compressible Navier-Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor, Ann. of Math., 188 (2018), 577-684.  doi: 10.4007/annals.2018.188.2.4.  Google Scholar

[2]

J. BřezinaE. Feireisl and A. Novotný, Stability of strong solutions to the Navier-Stokes-Fourier system, SIAM J. Math. Anal., 52 (2020), 1761-1785.  doi: 10.1137/18M1223022.  Google Scholar

[3]

H. Cabannes, Theoretical Magnetofluiddynamics, Academic Press, 1970. Google Scholar

[4]

T. ChangB. J. Jin and A. Novotný, Compressible Navier-Stokes system with general inflow-out flow boundary data, SIAM J. Math. Anal., 51 (2019), 1238-1278.  doi: 10.1137/17M115089X.  Google Scholar

[5]

N. Chaudhuri, On weak-strong uniqueness for compressible Navier-Stokes system with general pressure laws, Nonlinear Anal. Real World Appl., 49 (2019), 250-267.  doi: 10.1016/j.nonrwa.2019.03.004.  Google Scholar

[6]

N. Chaudhuri, On weak (measure-valued)-strong uniqueness for compressible Navier-Stokes system with non-monotone pressure law, J. Math. Fluid Mech., 22 (2020), Paper No. 17, 13 pp. doi: 10.1007/s00021-019-0465-y.  Google Scholar

[7]

G.-Q. Chen and D. Wang, Global solutions of nonlinear magnetohydrodynamics with large initial data, J. Differential Equations, 182 (2002), 344-376.  doi: 10.1006/jdeq.2001.4111.  Google Scholar

[8]

G.-Q. Chen and D. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamic equations, Z. Angew. Math. Phys., 54 (2003), 608-632.  doi: 10.1007/s00033-003-1017-z.  Google Scholar

[9]

R. J. Diperna, Measure-valued solutions to conservation laws, Arch. Ration. Mech. Anal., 88 (1985), 223-270.  doi: 10.1007/BF00752112.  Google Scholar

[10]

B. Ducomet and E. Feireisl, The equations of magnetohydrodynamics: on the interaction between matter and radiation in the evolution of gaseous stars, Comm. Math. Phys., 266 (2006), 595-629.  doi: 10.1007/s00220-006-0052-y.  Google Scholar

[11]

J. FanS. Jiang and G. Nakamura, Vanishing shear viscosity limit in the magnetohydrodynamic equations, Comm. Math. Phys., 270 (2007), 691-708.  doi: 10.1007/s00220-006-0167-1.  Google Scholar

[12]

D. Fang and T. Zhang, Compressible Navier-Stokes equations with vacuum state in the case of general pressure law, Math. Methods Appl. Sci., 29 (2006), 1081-1106.  doi: 10.1002/mma.708.  Google Scholar

[13]

E. Feireisl, On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable, Comment. Math. Univ. Carolin., 42 (2001), 83-98.   Google Scholar

[14]

E. Feireisl, Compressible Navier-Stokes equations with a non-monotone pressure law, J. Differential Equations, 184 (2002), 97-108.  doi: 10.1006/jdeq.2001.4137.  Google Scholar

[15]

E. Feireisl, On weak-strong uniqueness for the compressible Navier-Stokes system with non-monotone pressure law, Comm. Partial Differential Equations, 44 (2019), 271-278.  doi: 10.1080/03605302.2018.1543319.  Google Scholar

[16]

E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda and E. Wiedemann, Dissipative measure-valued solutions to the compressible Navier-Stokes system, Calc. Var. Partial Differential Equations, 55 (2016), Art. 141, 20 pp. doi: 10.1007/s00526-016-1089-1.  Google Scholar

[17]

E. FeireislB. J. Jin and A. Novotný, Relative entropies, suitable weak solutions and weak-strong uniqueness for the compressible Navier-Stokes system, J. Math. Fluid Mech., 14 (2012), 717-730.  doi: 10.1007/s00021-011-0091-9.  Google Scholar

[18]

E. FeireislA. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.  doi: 10.1007/PL00000976.  Google Scholar

[19]

P. G. Fernández-Dalgo and O. Jarrín, Weak-strong uniqueness in weighted $L^2$ spaces and weak suitable solutions in local Morrey spaces for the MHD equations, J. Differential Equations, 271 (2021), 864-915.  doi: 10.1016/j.jde.2020.09.017.  Google Scholar

[20]

H. Freistühler and P. Szmolyan, Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves, SIAM J. Math. Anal., 26 (1995), 112-128.  doi: 10.1137/S0036141093247366.  Google Scholar

[21]

P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech., 13 (2011), 137-146.  doi: 10.1007/s00021-009-0006-1.  Google Scholar

[22]

P. GwiazdaA. Świerczewska-Gwiazda and E. Wiedemann, Weak-strong uniqueness for measure-valued solutions of some compressible fluid models, Nonlinearity, 28 (2015), 3873-3890.  doi: 10.1088/0951-7715/28/11/3873.  Google Scholar

[23]

D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differential Equations, 120 (1995), 215-254.  doi: 10.1006/jdeq.1995.1111.  Google Scholar

[24]

D. Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data, Arch. Ration. Mech. Anal., 132 (1995), 1-14.  doi: 10.1007/BF00390346.  Google Scholar

[25]

D. Hoff and E. Tsyganov, Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics, Z. Angew. Math. Phys., 56 (2005), 791-804.  doi: 10.1007/s00033-005-4057-8.  Google Scholar

[26]

X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238.  doi: 10.1007/s00205-010-0295-9.  Google Scholar

[27] P.-L. Lions, Mathematical Topics in Fluid Mechanics, vol. 2. Compressible Models, New York: The Clarendon Press; Oxford University Press, 1998.   Google Scholar
[28]

Y. Liu and T. Zhang, Global weak solutions to a 2D compressible non-resistivity MHD system with non-monotone pressure law and nonconstant viscosity, J. Math. Anal. Appl., 502 (2021), Paper No. 125244, 38 pp. doi: 10.1016/j.jmaa.2021.125244.  Google Scholar

[29]

J. Neustupa, Measure-valued solutions of the Euler and Navier-Stokes equations for compressible barotropic fluids, Math. Nachr., 163 (1993), 217-227.  doi: 10.1002/mana.19931630119.  Google Scholar

[30]

D. Wang, Large solutions to the initial-boundary value problem for planar magnetohydrodynamics, SIAM J. Appl. Math., 63 (2003), 1424-1441.  doi: 10.1137/S0036139902409284.  Google Scholar

[31]

W. Yan, On weak-strong uniqueness property for full compressible magnetohydrodynamics flows, Cent. Eur. J. Math., 11 (2013), 2005-2019.  doi: 10.2478/s11533-013-0297-6.  Google Scholar

[32]

Y.-F. YangC. Dou and Q. Ju, Weak-strong uniqueness property for the magnetohydrodynamic equations of three-dimensional compressible isentropic flows, Nonlinear Anal., 85 (2013), 23-30.  doi: 10.1016/j.na.2013.02.015.  Google Scholar

[1]

Hongjun Gao, Šárka Nečasová, Tong Tang. On weak-strong uniqueness and singular limit for the compressible Primitive Equations. Discrete & Continuous Dynamical Systems, 2020, 40 (7) : 4287-4305. doi: 10.3934/dcds.2020181

[2]

Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032

[3]

Wenjing Zhao. Weak-strong uniqueness of incompressible magneto-viscoelastic flows. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2907-2917. doi: 10.3934/cpaa.2020127

[4]

Etienne Emmrich, Robert Lasarzik. Weak-strong uniqueness for the general Ericksen—Leslie system in three dimensions. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4617-4635. doi: 10.3934/dcds.2018202

[5]

Cleopatra Christoforou, Myrto Galanopoulou, Athanasios E. Tzavaras. Measure-valued solutions for the equations of polyconvex adiabatic thermoelasticity. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6175-6206. doi: 10.3934/dcds.2019269

[6]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[7]

Xianpeng Hu, Hao Wu. Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3437-3461. doi: 10.3934/dcds.2015.35.3437

[8]

Sergiu Aizicovici, Simeon Reich. Anti-periodic solutions to a class of non-monotone evolution equations. Discrete & Continuous Dynamical Systems, 1999, 5 (1) : 35-42. doi: 10.3934/dcds.1999.5.35

[9]

Tomoyuki Suzuki. Regularity criteria in weak spaces in terms of the pressure to the MHD equations. Conference Publications, 2011, 2011 (Special) : 1335-1343. doi: 10.3934/proc.2011.2011.1335

[10]

Yong Zeng. Existence and uniqueness of very weak solution of the MHD type system. Discrete & Continuous Dynamical Systems, 2020, 40 (10) : 5617-5638. doi: 10.3934/dcds.2020240

[11]

Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029

[12]

Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255

[13]

Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331

[14]

Pablo Amster, Manuel Zamora. Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 4819-4835. doi: 10.3934/dcds.2018211

[15]

Alfonso Castro, Benjamin Preskill. Existence of solutions for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 649-658. doi: 10.3934/dcds.2010.28.649

[16]

Jun Chen, Wenyu Sun, Zhenghao Yang. A non-monotone retrospective trust-region method for unconstrained optimization. Journal of Industrial & Management Optimization, 2013, 9 (4) : 919-944. doi: 10.3934/jimo.2013.9.919

[17]

José Caicedo, Alfonso Castro, Arturo Sanjuán. Bifurcation at infinity for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 1857-1865. doi: 10.3934/dcds.2017078

[18]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

[19]

Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito. Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 233-258. doi: 10.3934/mbe.2015.12.233

[20]

Yuxiang Zhang, Shiwang Ma. Invasion dynamics of a diffusive pioneer-climax model: Monotone and non-monotone cases. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4767-4788. doi: 10.3934/dcdsb.2020312

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (47)
  • HTML views (27)
  • Cited by (0)

Other articles
by authors

[Back to Top]