doi: 10.3934/dcdsb.2021310
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Multi-valued random dynamics of stochastic wave equations with infinite delays

1. 

College of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan 030006, China

2. 

School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000, China

3. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, c/ Tarfia s/n, 41012-Sevilla, Spain

* Corresponding author

Received  August 2021 Early access January 2022

Fund Project: This work was supported by NSF of China (Grants No. 11801335, 41875084), Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2020L0249). The research of T. Caraballo has been partially supported by Ministerio de Ciencia Innovación y Universidades (Spain), FEDER (European Community) under grant PGC2018-096540-B-I00, and by FEDER and Junta de Andalucía (Consejería de Economía y Conocimiento) under projects US-1254251 and P18-FR-4509

This paper is devoted to the asymptotic behavior of solutions to a non-autonomous stochastic wave equation with infinite delays and additive white noise. The nonlinear terms of the equation are not expected to be Lipschitz continuous, but only satisfy continuity assumptions along with growth conditions, under which the uniqueness of the solutions may not hold. Using the theory of multi-valued non-autonomous random dynamical systems, we prove the existence and measurability of a compact global pullback attractor.

Citation: Jingyu Wang, Yejuan Wang, Tomás Caraballo. Multi-valued random dynamics of stochastic wave equations with infinite delays. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021310
References:
[1] L. Arnold, Random Dynamical Systems, Springer-Verlag, New York, Berlin, 1998.  doi: 10.1007/978-3-662-12878-7.  Google Scholar
[2]

J. ArrietaA. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations, 17 (1992), 841-866.  doi: 10.1080/03605309208820866.  Google Scholar

[3]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.  Google Scholar

[4]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[5]

S. Borini and V. Pata, Uniform attractors for a strongly damped wave equation with linear memory, Asymptot. Anal., 20 (1999), 263-277.   Google Scholar

[6]

T. CaraballoA. N. CarvalhoJ. A. Langa and F. Rivero, A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor, Nonlinear Anal., 74 (2011), 2272-2283.  doi: 10.1016/j.na.2010.11.032.  Google Scholar

[7]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuß and J. Valero, Nonautonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443.  doi: 10.3934/dcds.2008.21.415.  Google Scholar

[8]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuß and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439-455.  doi: 10.3934/dcdsb.2010.14.439.  Google Scholar

[9]

T. CaraballoP. E. Kloeden and J. Real, Pullback and forward attractors for a damped wave equation with delays, Stoch. Dyn., 4 (2004), 405-423.  doi: 10.1142/S0219493704001139.  Google Scholar

[10]

T. CaraballoE. Morillas and J. Valero, Random attractors for stochastic lattice systems with non-Lipschitz nonlinearity, J. Difference Equ. Appl., 17 (2011), 161-184.  doi: 10.1080/10236198.2010.549010.  Google Scholar

[11]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc. Colloq. Publ., vol. 49, American Mathematical Society, Providence, RI, 2002. doi: 10.1051/cocv:2002056.  Google Scholar

[12]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[13]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[14]

M. Fabrizio and A. Morro, Mathematical Problems in Linear Viscoelasticity, SIAM Studies in Applied Mathematics, vol. 12, SIAM, Philadelphia, 1992. doi: 10.1137/1.9781611970807.  Google Scholar

[15]

X. Fan, Random attractors for damped stochastic wave equations with multiplicative noise, Internat. J. Math., 19 (2008), 421-437.  doi: 10.1142/S0129167X08004741.  Google Scholar

[16]

E. Feireisl, Attractors for semilinear damped wave equations on $\mathbb{R}^3$, Nonlinear Anal., 23 (1994), 187-195.  doi: 10.1016/0362-546X(94)90041-8.  Google Scholar

[17]

F. Flandoli and B. Schmalfuß, Random attractors for the $3$D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[18]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988. doi: 10.1090/surv/025.  Google Scholar

[19]

M. He and A. Liu, The oscillation of hyperbolic functional differential equations, Appl. Math. Comput., 142 (2003), 205-224.  doi: 10.1016/S0096-3003(02)00295-3.  Google Scholar

[20]

R. Jones and B. Wang, Asymptotic behavior of a class of stochastic nonlinear wave equations with dispersive and dissipative terms, Nonlinear Anal. Real World Appl., 14 (2013), 1308-1322.  doi: 10.1016/j.nonrwa.2012.09.019.  Google Scholar

[21]

A. Kh. Khanmamedov, Global attractors for wave equations with nonlinear interior damping and critical exponents, J. Differential Equations, 230 (2006), 702-719.  doi: 10.1016/j.jde.2006.06.001.  Google Scholar

[22] V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999.  doi: 10.1007/978-94-017-1965-0.  Google Scholar
[23]

I. KucukI. Sadek and Y. Yilmaz, Active control of a smart beam with time delay by Legendre wavelets, Appl. Math. Comput., 218 (2012), 8968-8977.  doi: 10.1016/j.amc.2012.02.057.  Google Scholar

[24]

H. LiY. You and J. Tu, Random attractors and averaging for non-autonomous stochastic wave equations with nonlinear damping, J. Differential Equations, 258 (2015), 148-190.  doi: 10.1016/j.jde.2014.09.007.  Google Scholar

[25]

F. Morillas and J. Valero, Attractors for reaction-diffusion equations in $\mathbb{R}^N$ with continuous nonlinearity, Asymptot. Anal., 44 (2005), 111-130.   Google Scholar

[26]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.  Google Scholar

[27]

V. Pata, Attractors for a damped wave equation on $\mathbb{R}^3$ with linear memory, Math. Methods Appl. Sci., 23 (2000), 633-653.  doi: 10.1002/(SICI)1099-1476(20000510)23:7<633::AID-MMA135>3.0.CO;2-C.  Google Scholar

[28]

N. Raskin and Y. Halevi, Control of flexible structures governed by the wave equation, American Control Conference, Arlington, VA, 2001, 2486–2491. doi: 10.1109/ACC.2001.946126.  Google Scholar

[29] G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002.  doi: 10.1007/978-1-4757-5037-9.  Google Scholar
[30]

Z. ShenS. Zhou and W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differential Equations, 248 (2010), 1432-1457.  doi: 10.1016/j.jde.2009.10.007.  Google Scholar

[31]

C. SunM. Yang and C. Zhong, Global attractors for the wave equation with nonlinear damping, J. Differential Equations, 227 (2006), 427-443.  doi: 10.1016/j.jde.2005.09.010.  Google Scholar

[32] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997.  doi: 10.1007/978-1-4612-0645-3.  Google Scholar
[33]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbb{R}^3$, Trans. Amer. Math. Soc., 363 (2011), 3639-3663.  doi: 10.1090/S0002-9947-2011-05247-5.  Google Scholar

[34]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[35]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[36]

B. Wang, Multivalued non-autonomous random dynamical systems for wave equations without uniqueness, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2011-2051.  doi: 10.3934/dcdsb.2017119.  Google Scholar

[37]

J. WangF. Meng and S. Liu, Integral average method for oscillation of second order partial differential equations with delays, Appl. Math. Comput., 187 (2007), 815-823.  doi: 10.1016/j.amc.2006.08.160.  Google Scholar

[38]

J. WangY. Wang and D. Zhao, Pullback attractors for multi-valued non-compact random dynamical systems generated by semi-linear degenerate parabolic equations with unbounded delays, Stoch. Dyn., 17 (2016), 1750001, 49 pp.  doi: 10.1142/S0219493717500010.  Google Scholar

[39]

Y. Wang, Pullback attractors of a damped wave equation with delays, Stoch. Dyn., 15 (2015), 1550003, 21 pp.  doi: 10.1142/S0219493715500033.  Google Scholar

[40]

Y. WangY. Qin and J. Wang, Pullback attractors for a strongly damped delay wave equation in $\mathbb{R}^n$, Stoch. Dyn., 18 (2018), 1850016, 24 pp.  doi: 10.1142/S0219493718500168.  Google Scholar

[41]

Y. Wang and J. Wang, Pullback attractors for multi-valued non-compact random dynamical systems generated by reaction-diffusion equations on an unbounded domain, J. Differential Equations, 259 (2015), 728-776.  doi: 10.1016/j.jde.2015.02.026.  Google Scholar

[42]

Y. Wang and S. Zhou, Kernel sections and uniform attractors of multi-valued semiprocesses, J. Differential Equations, 232 (2007), 573-622.  doi: 10.1016/j.jde.2006.07.005.  Google Scholar

[43]

Z. WangS. Zhou and A. Gu, Random attractor for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Anal. Real World Appl., 12 (2011), 3468-3482.  doi: 10.1016/j.nonrwa.2011.06.008.  Google Scholar

[44] J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996.  doi: 10.1007/978-1-4612-4050-1.  Google Scholar
[45]

M. YangJ. Duan and P. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise, Nonlinear Anal. Real World Appl., 12 (2011), 464-478.  doi: 10.1016/j.nonrwa.2010.06.032.  Google Scholar

[46]

Y. You, Global dynamics of nonlinear wave equations with cubic non-monotone damping, Dyn. Partial Differ. Equ., 1 (2004), 65-86.  doi: 10.4310/DPDE.2004.v1.n1.a3.  Google Scholar

[47]

S. Zelik, Asymptotic regularity of solutions of a non-autonomous damped wave equation with a critical growth exponent, Commun. Pure Appl. Anal., 3 (2004), 921-934.  doi: 10.3934/cpaa.2004.3.921.  Google Scholar

[48]

S. Zhou and M. Zhao, Random attractors for damped non-autonomous wave equations with memory and white noise, Nonlinear Anal., 120 (2015), 202-226.  doi: 10.1016/j.na.2015.03.009.  Google Scholar

show all references

References:
[1] L. Arnold, Random Dynamical Systems, Springer-Verlag, New York, Berlin, 1998.  doi: 10.1007/978-3-662-12878-7.  Google Scholar
[2]

J. ArrietaA. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations, 17 (1992), 841-866.  doi: 10.1080/03605309208820866.  Google Scholar

[3]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.  Google Scholar

[4]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[5]

S. Borini and V. Pata, Uniform attractors for a strongly damped wave equation with linear memory, Asymptot. Anal., 20 (1999), 263-277.   Google Scholar

[6]

T. CaraballoA. N. CarvalhoJ. A. Langa and F. Rivero, A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor, Nonlinear Anal., 74 (2011), 2272-2283.  doi: 10.1016/j.na.2010.11.032.  Google Scholar

[7]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuß and J. Valero, Nonautonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443.  doi: 10.3934/dcds.2008.21.415.  Google Scholar

[8]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuß and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439-455.  doi: 10.3934/dcdsb.2010.14.439.  Google Scholar

[9]

T. CaraballoP. E. Kloeden and J. Real, Pullback and forward attractors for a damped wave equation with delays, Stoch. Dyn., 4 (2004), 405-423.  doi: 10.1142/S0219493704001139.  Google Scholar

[10]

T. CaraballoE. Morillas and J. Valero, Random attractors for stochastic lattice systems with non-Lipschitz nonlinearity, J. Difference Equ. Appl., 17 (2011), 161-184.  doi: 10.1080/10236198.2010.549010.  Google Scholar

[11]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc. Colloq. Publ., vol. 49, American Mathematical Society, Providence, RI, 2002. doi: 10.1051/cocv:2002056.  Google Scholar

[12]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[13]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[14]

M. Fabrizio and A. Morro, Mathematical Problems in Linear Viscoelasticity, SIAM Studies in Applied Mathematics, vol. 12, SIAM, Philadelphia, 1992. doi: 10.1137/1.9781611970807.  Google Scholar

[15]

X. Fan, Random attractors for damped stochastic wave equations with multiplicative noise, Internat. J. Math., 19 (2008), 421-437.  doi: 10.1142/S0129167X08004741.  Google Scholar

[16]

E. Feireisl, Attractors for semilinear damped wave equations on $\mathbb{R}^3$, Nonlinear Anal., 23 (1994), 187-195.  doi: 10.1016/0362-546X(94)90041-8.  Google Scholar

[17]

F. Flandoli and B. Schmalfuß, Random attractors for the $3$D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[18]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988. doi: 10.1090/surv/025.  Google Scholar

[19]

M. He and A. Liu, The oscillation of hyperbolic functional differential equations, Appl. Math. Comput., 142 (2003), 205-224.  doi: 10.1016/S0096-3003(02)00295-3.  Google Scholar

[20]

R. Jones and B. Wang, Asymptotic behavior of a class of stochastic nonlinear wave equations with dispersive and dissipative terms, Nonlinear Anal. Real World Appl., 14 (2013), 1308-1322.  doi: 10.1016/j.nonrwa.2012.09.019.  Google Scholar

[21]

A. Kh. Khanmamedov, Global attractors for wave equations with nonlinear interior damping and critical exponents, J. Differential Equations, 230 (2006), 702-719.  doi: 10.1016/j.jde.2006.06.001.  Google Scholar

[22] V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999.  doi: 10.1007/978-94-017-1965-0.  Google Scholar
[23]

I. KucukI. Sadek and Y. Yilmaz, Active control of a smart beam with time delay by Legendre wavelets, Appl. Math. Comput., 218 (2012), 8968-8977.  doi: 10.1016/j.amc.2012.02.057.  Google Scholar

[24]

H. LiY. You and J. Tu, Random attractors and averaging for non-autonomous stochastic wave equations with nonlinear damping, J. Differential Equations, 258 (2015), 148-190.  doi: 10.1016/j.jde.2014.09.007.  Google Scholar

[25]

F. Morillas and J. Valero, Attractors for reaction-diffusion equations in $\mathbb{R}^N$ with continuous nonlinearity, Asymptot. Anal., 44 (2005), 111-130.   Google Scholar

[26]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.  Google Scholar

[27]

V. Pata, Attractors for a damped wave equation on $\mathbb{R}^3$ with linear memory, Math. Methods Appl. Sci., 23 (2000), 633-653.  doi: 10.1002/(SICI)1099-1476(20000510)23:7<633::AID-MMA135>3.0.CO;2-C.  Google Scholar

[28]

N. Raskin and Y. Halevi, Control of flexible structures governed by the wave equation, American Control Conference, Arlington, VA, 2001, 2486–2491. doi: 10.1109/ACC.2001.946126.  Google Scholar

[29] G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002.  doi: 10.1007/978-1-4757-5037-9.  Google Scholar
[30]

Z. ShenS. Zhou and W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differential Equations, 248 (2010), 1432-1457.  doi: 10.1016/j.jde.2009.10.007.  Google Scholar

[31]

C. SunM. Yang and C. Zhong, Global attractors for the wave equation with nonlinear damping, J. Differential Equations, 227 (2006), 427-443.  doi: 10.1016/j.jde.2005.09.010.  Google Scholar

[32] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997.  doi: 10.1007/978-1-4612-0645-3.  Google Scholar
[33]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbb{R}^3$, Trans. Amer. Math. Soc., 363 (2011), 3639-3663.  doi: 10.1090/S0002-9947-2011-05247-5.  Google Scholar

[34]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[35]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[36]

B. Wang, Multivalued non-autonomous random dynamical systems for wave equations without uniqueness, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2011-2051.  doi: 10.3934/dcdsb.2017119.  Google Scholar

[37]

J. WangF. Meng and S. Liu, Integral average method for oscillation of second order partial differential equations with delays, Appl. Math. Comput., 187 (2007), 815-823.  doi: 10.1016/j.amc.2006.08.160.  Google Scholar

[38]

J. WangY. Wang and D. Zhao, Pullback attractors for multi-valued non-compact random dynamical systems generated by semi-linear degenerate parabolic equations with unbounded delays, Stoch. Dyn., 17 (2016), 1750001, 49 pp.  doi: 10.1142/S0219493717500010.  Google Scholar

[39]

Y. Wang, Pullback attractors of a damped wave equation with delays, Stoch. Dyn., 15 (2015), 1550003, 21 pp.  doi: 10.1142/S0219493715500033.  Google Scholar

[40]

Y. WangY. Qin and J. Wang, Pullback attractors for a strongly damped delay wave equation in $\mathbb{R}^n$, Stoch. Dyn., 18 (2018), 1850016, 24 pp.  doi: 10.1142/S0219493718500168.  Google Scholar

[41]

Y. Wang and J. Wang, Pullback attractors for multi-valued non-compact random dynamical systems generated by reaction-diffusion equations on an unbounded domain, J. Differential Equations, 259 (2015), 728-776.  doi: 10.1016/j.jde.2015.02.026.  Google Scholar

[42]

Y. Wang and S. Zhou, Kernel sections and uniform attractors of multi-valued semiprocesses, J. Differential Equations, 232 (2007), 573-622.  doi: 10.1016/j.jde.2006.07.005.  Google Scholar

[43]

Z. WangS. Zhou and A. Gu, Random attractor for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Anal. Real World Appl., 12 (2011), 3468-3482.  doi: 10.1016/j.nonrwa.2011.06.008.  Google Scholar

[44] J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996.  doi: 10.1007/978-1-4612-4050-1.  Google Scholar
[45]

M. YangJ. Duan and P. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise, Nonlinear Anal. Real World Appl., 12 (2011), 464-478.  doi: 10.1016/j.nonrwa.2010.06.032.  Google Scholar

[46]

Y. You, Global dynamics of nonlinear wave equations with cubic non-monotone damping, Dyn. Partial Differ. Equ., 1 (2004), 65-86.  doi: 10.4310/DPDE.2004.v1.n1.a3.  Google Scholar

[47]

S. Zelik, Asymptotic regularity of solutions of a non-autonomous damped wave equation with a critical growth exponent, Commun. Pure Appl. Anal., 3 (2004), 921-934.  doi: 10.3934/cpaa.2004.3.921.  Google Scholar

[48]

S. Zhou and M. Zhao, Random attractors for damped non-autonomous wave equations with memory and white noise, Nonlinear Anal., 120 (2015), 202-226.  doi: 10.1016/j.na.2015.03.009.  Google Scholar

[1]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[2]

Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022

[3]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[4]

Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195

[5]

Shuang Yang, Yangrong Li. Forward controllability of a random attractor for the non-autonomous stochastic sine-Gordon equation on an unbounded domain. Evolution Equations & Control Theory, 2020, 9 (3) : 581-604. doi: 10.3934/eect.2020025

[6]

Ling Xu, Jianhua Huang, Qiaozhen Ma. Random exponential attractor for stochastic non-autonomous suspension bridge equation with additive white noise. Discrete & Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021318

[7]

Bixiang Wang. Random attractors for non-autonomous stochastic wave equations with multiplicative noise. Discrete & Continuous Dynamical Systems, 2014, 34 (1) : 269-300. doi: 10.3934/dcds.2014.34.269

[8]

Jingyu Wang, Yejuan Wang, Lin Yang, Tomás Caraballo. Random attractors for stochastic delay wave equations on $ \mathbb{R}^n $ with linear memory and nonlinear damping. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021141

[9]

Zhiming Liu, Zhijian Yang. Global attractor of multi-valued operators with applications to a strongly damped nonlinear wave equation without uniqueness. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 223-240. doi: 10.3934/dcdsb.2019179

[10]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120

[11]

Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete & Continuous Dynamical Systems, 2014, 34 (10) : 4343-4370. doi: 10.3934/dcds.2014.34.4343

[12]

Ting Li. Pullback attractors for asymptotically upper semicompact non-autonomous multi-valued semiflows. Communications on Pure & Applied Analysis, 2007, 6 (1) : 279-285. doi: 10.3934/cpaa.2007.6.279

[13]

Bixiang Wang. Multivalued non-autonomous random dynamical systems for wave equations without uniqueness. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2011-2051. doi: 10.3934/dcdsb.2017119

[14]

Yejuan Wang. On the upper semicontinuity of pullback attractors for multi-valued noncompact random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3669-3708. doi: 10.3934/dcdsb.2016116

[15]

Xiaoyue Li, Xuerong Mao. Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discrete & Continuous Dynamical Systems, 2009, 24 (2) : 523-545. doi: 10.3934/dcds.2009.24.523

[16]

Ling Xu, Jianhua Huang, Qiaozhen Ma. Upper semicontinuity of random attractors for the stochastic non-autonomous suspension bridge equation with memory. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5959-5979. doi: 10.3934/dcdsb.2019115

[17]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[18]

Tomás Caraballo, M. J. Garrido-Atienza, B. Schmalfuss, José Valero. Non--autonomous and random attractors for delay random semilinear equations without uniqueness. Discrete & Continuous Dynamical Systems, 2008, 21 (2) : 415-443. doi: 10.3934/dcds.2008.21.415

[19]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[20]

Yejuan Wang, Tomás Caraballo. Morse decomposition for gradient-like multi-valued autonomous and nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (8) : 2303-2326. doi: 10.3934/dcdss.2020092

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (39)
  • HTML views (33)
  • Cited by (0)

Other articles
by authors

[Back to Top]