doi: 10.3934/dcdsb.2021311
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Statistical solution and Liouville type theorem for coupled Schrödinger-Boussinesq equations on infinite lattices

1. 

Department of Data science and Big data technology, Wenzhou University, Wenzhou, Zhejiang 325035, China

2. 

Department of Mathematics, Wenzhou University, Wenzhou, Zhejiang 325035, China

* Corresponding author: Chunqiu Li

Received  August 2021 Revised  November 2021 Early access January 2022

In this article, we are concerned with statistical solutions for the nonautonomous coupled Schrödinger-Boussinesq equations on infinite lattices. Firstly, we verify the existence of a pullback-$ {\mathcal{D}} $ attractor and establish the existence of a unique family of invariant Borel probability measures carried by the pullback-$ {\mathcal{D}} $ attractor for this lattice system. Then, it will be shown that the family of invariant Borel probability measures is a statistical solution and satisfies a Liouville type theorem. Finally, we illustrate that the invariant property of the statistical solution is indeed a particular case of the Liouville type theorem.

Citation: Congcong Li, Chunqiu Li, Jintao Wang. Statistical solution and Liouville type theorem for coupled Schrödinger-Boussinesq equations on infinite lattices. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021311
References:
[1]

A. Y. Abdallah, Uniform exponential attractors for first order non-autonomous lattice dynamical systems, J. Differential Equations, 251 (2011), 1489-1504.  doi: 10.1016/j.jde.2011.05.030.  Google Scholar

[2]

A. C. BronziC. F. Mondaini and R. M. S. Rosa, Trajectory statistical solutions for three-dimensional Navier-Stokes-like systems, SIAM J. Math. Anal., 46 (2014), 1893-1921.  doi: 10.1137/130931631.  Google Scholar

[3]

A. C. BronziC. F. Mondaini and R. M. S. Rosa, Abstract framework for the theory of statistical solutions, J. Differential Equations, 260 (2016), 8428-8484.  doi: 10.1016/j.jde.2016.02.027.  Google Scholar

[4]

T. CaraballoP. E. Kloeden and J. Real, Invariant measures and statistical solutions of the globally modified Navier-Stokes equations, Discrete Contin. Dyn. Syst. -B, 10 (2008), 761-781.  doi: 10.3934/dcdsb.2008.10.761.  Google Scholar

[5]

T. CaraballoF. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities, J. Differential Equations, 253 (2012), 667-693.  doi: 10.1016/j.jde.2012.03.020.  Google Scholar

[6]

M. D. Chekroun and N. E. Glatt-Holtz, Invariant measures for dissipative dynamical systems: Abstract results and applications, Comm. Math. Phys., 316 (2012), 723-761.  doi: 10.1007/s00220-012-1515-y.  Google Scholar

[7]

I. Chueshov and A. Shcherbina, Semi-weak well-posedness and attractors for 2D Schrödinger-Boussinesq equations, Evolution Equations and Control Theory, 1 (2012), 57-80.  doi: 10.3934/eect.2012.1.57.  Google Scholar

[8]

T. Erneux and G. Nicolis, Propagating waves in discrete bistable reaction diffusion systems, Phys. D, 67 (1993), 237-244.  doi: 10.1016/0167-2789(93)90208-I.  Google Scholar

[9]

L. G. Farah and A. Pastor, On the periodic Schrödinger-Boussinesq system, J. Math. Anal. Appl., 368 (2010), 330-349.  doi: 10.1016/j.jmaa.2010.03.007.  Google Scholar

[10] C. FoiasO. ManleyR. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511546754.  Google Scholar
[11]

B. Guo and F. Chen, Finite dimensional behavior of global attractors for weakly damped nonlinear Schrödinger-Boussinesq equation, Phys. D, 93 (1996), 101-118.  doi: 10.1016/0167-2789(95)00277-4.  Google Scholar

[12]

B. Guo and X. Duo, The behavior of attractors for damped Schrödinger-Boussinesq equation, Comm. Nonlinear Sci. Numer. Simul., 6 (2001), 54-60.  doi: 10.1016/S1007-5704(01)90030-9.  Google Scholar

[13]

L. HanJ. Zhang and B. Guo, Global well-posedness for the fractional Schrödinger-Boussinesq system, Comm. Nonlinear Sci. Numer. Simul., 19 (2014), 2644-2652.  doi: 10.1016/j.cnsns.2013.12.032.  Google Scholar

[14]

X. Han and P. E. Kloden, Non-autonomous lattice systems with switching effects and delayed recovery, J. Differential Equations, 261 (2016), 2986-3009.  doi: 10.1016/j.jde.2016.05.015.  Google Scholar

[15]

X. HanP. E. Kloden and B. Usman, Upper semi-continuous convergence of attractors for a Hopfield-type lattice model, Nonlinearity, 33 (2020), 1881-1906.  doi: 10.1088/1361-6544/ab6813.  Google Scholar

[16]

X. HanW. Shen and S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266.  doi: 10.1016/j.jde.2010.10.018.  Google Scholar

[17]

Y. HeC. Li and J. Wang, Invariant measures and statistical solutions for the nonautonomous discrete modified Swift-Hohenberg equation, Bull. Malays. Math. Sci. Soc., 44 (2021), 3819-3837.  doi: 10.1007/s40840-021-01143-6.  Google Scholar

[18]

J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987), 556-572.  doi: 10.1137/0147038.  Google Scholar

[19]

P. E. KloedenP. Marín-Rubio and J. Real, Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations, Comm. Pure Appl. Anal., 8 (2009), 785-802.  doi: 10.3934/cpaa.2009.8.785.  Google Scholar

[20]

C. Li and J. Wang, On the forward dynamical behaviour of nonautonomous lattice dynamical systems, J. Differ. Equ. Appl., 27 (2021), 1052-1080.  doi: 10.1080/10236198.2021.1962850.  Google Scholar

[21]

Y. Li, On the initial boundary value problems for two dimensional systems of Zakharov equations and of complex-Schrödinger-real-Boussinesq equations, J. Partial Differential Equations, 5 (1992), 81-93.   Google Scholar

[22]

Y. Li and Q. Chen, Finite dimensional global attractor for dissipative Schrödinger-Boussinesq equations, J. Math. Anal. Appl., 205 (1997), 107-132.  doi: 10.1006/jmaa.1996.5148.  Google Scholar

[23]

G. Łukaszewicz, Pullback attractors and statistical solutions for 2-D Navier-Stokes equations, Discrete Contin. Dyn. Syst. -B, 9 (2008), 643-659.  doi: 10.3934/dcdsb.2008.9.643.  Google Scholar

[24]

G. ŁukaszewiczJ. Real and J. C. Robinson, Invariant measures for dissipative dynamical systems and generalised Banach limits, J. Dynam. Differential Equations, 23 (2011), 225-250.  doi: 10.1007/s10884-011-9213-6.  Google Scholar

[25]

G. Łukaszewicz and J. C. Robinson, Invariant measures for nonautonomous dissipative dynamical systems, Discrete Contin. Dyn. Syst., 34 (2014), 4211-4222.  doi: 10.3934/dcds.2014.34.4211.  Google Scholar

[26]

L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821-824.  doi: 10.1103/PhysRevLett.64.821.  Google Scholar

[27]

C. WangG. Xue and C. Zhao, Invariant Borel probability measures for discrete long-wave-short-wave resonance equations, Appl. Math. Comp., 339 (2018), 853-865.  doi: 10.1016/j.amc.2018.06.059.  Google Scholar

[28]

J. WangX. Zhang and C. Zhao, Statistical solutions for a nonautonomous modified Swift-Hohenberg equation, Math. Methods Appl. Sci., 44 (2021), 14502-14516.  doi: 10.1002/mma.7719.  Google Scholar

[29]

J. WangC. Zhao and T. Caraballo, Invariant measures for the 3D globally modified Navier-Stokes equations with unbounded variable delays, Comm. Nonlinear Sci. Numer. Simul., 91 (2020), 105459, 14 pp.  doi: 10.1016/j.cnsns.2020.105459.  Google Scholar

[30]

X. Wang, Upper semi-continuity of stationary statistical properties of dissipative systems, Discrete Contin. Dyn. Syst., 23 (2009), 521-540.  doi: 10.3934/dcds.2009.23.521.  Google Scholar

[31]

Y. Wang and K. Bai, Pullback attractors for a class of nonlinear lattices with delays, Discrete. Contin. Dyn. Syst. -B, 20 (2015), 1213-1230.  doi: 10.3934/dcdsb.2015.20.1213.  Google Scholar

[32]

Y. WangJ. Xu and P. E. Kloeden, Asymptotic behavior of stochastic lattice systems with a Caputo fractional time derivative, Nonlinear Anal. TMA, 135 (2016), 205-222.  doi: 10.1016/j.na.2016.01.020.  Google Scholar

[33]

S. Wu and J. Huang, Invariant measure and statistical solutions for nonautonomous discrete Klein-Gordon-Schrödinger type equations, J. Appl. Anal. Comput., 10 (2020), 1516-1533.  doi: 10.11948/20190243.  Google Scholar

[34]

Q. Xiao and C. Q. Li, Invariant Borel probability measures for the discrete three component reversible Gray-Scott model, Acta Mathematica Scientia-Series A, 2 (2021), 523-537.   Google Scholar

[35]

X. YangC. Zhao and J. Cao, Dynamics of the discrete coupled nonlinear Schrödinger-Boussinesq equations, Appl. Math. Comp., 219 (2013), 8508-8524.  doi: 10.1016/j.amc.2013.01.053.  Google Scholar

[36]

C. Zhao and T. Caraballo, Asymptotic regularity of trajectory attractor and trajectory statistical solution for the 3D globally modified Navier-Stokes equations, J. Differential Equations, 266 (2019), 7205-7229.  doi: 10.1016/j.jde.2018.11.032.  Google Scholar

[37]

C. ZhaoT. Caraballo and G. Łukaszewicz, Statistical solution and Liouville type theorem for the Klein-Gordon-Schrödinger equations, J. Differential Equations, 281 (2021), 1-32.  doi: 10.1016/j.jde.2021.01.039.  Google Scholar

[38]

C. ZhaoY. Li and T. Caraballo, Trajectory statistical solutions and Liouville type equations for evolution equations: Abstract results and applications, J. Differential Equations, 269 (2020), 467-494.  doi: 10.1016/j.jde.2019.12.011.  Google Scholar

[39]

C. ZhaoZ. Song and T. Caraballo, Strong trajectory statistical solutions and Liouville type equation for dissipative Euler equations, Appl. Math. Lett., 99 (2020), 105981, 6 pp.  doi: 10.1016/j.aml.2019.07.012.  Google Scholar

[40]

C. ZhaoG. Xue and G. Łukaszewicz, Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations, Discrete Contin. Dyn. Syst. -B, 23 (2018), 4021-4044.  doi: 10.3934/dcdsb.2018122.  Google Scholar

[41]

C. Zhao and L. Yang, Pullback attractors and invariant measures for the globally modified Navier-Stokes equations, Comm. Math. Sci., 15 (2017), 1565-1580.  doi: 10.4310/CMS.2017.v15.n6.a4.  Google Scholar

[42]

C. Zhao and S. Zhou, Compact kernel sections for nonautonomous Klein-Gordon-Schrödinger equations on infinite lattices, J. Math. Anal. Appl., 332 (2007), 32-56.  doi: 10.1016/j.jmaa.2006.10.002.  Google Scholar

[43]

C. Zhao and S. Zhou, Compact uniform attractors for dissipative lattice dynamical systems with delays, Discrete Contin. Dyn. Syst., 21 (2008), 643-663.  doi: 10.3934/dcds.2008.21.643.  Google Scholar

[44]

X. Zhao and S. Zhou, Kernel sections for processes and nonautonomous lattice systems, Discrete Contin. Dyn. Syst. -B, 9 (2008), 763-785.  doi: 10.3934/dcdsb.2008.9.763.  Google Scholar

[45]

S. Zhou, Attractors for first order dissipative lattice dynamical systems, Physica D, 178 (2003), 51-61.  doi: 10.1016/S0167-2789(02)00807-2.  Google Scholar

[46]

S. Zhou, Attractors and approximations for lattice dynamical systems, J. Differential Equations, 200 (2004), 342-368.  doi: 10.1016/j.jde.2004.02.005.  Google Scholar

show all references

References:
[1]

A. Y. Abdallah, Uniform exponential attractors for first order non-autonomous lattice dynamical systems, J. Differential Equations, 251 (2011), 1489-1504.  doi: 10.1016/j.jde.2011.05.030.  Google Scholar

[2]

A. C. BronziC. F. Mondaini and R. M. S. Rosa, Trajectory statistical solutions for three-dimensional Navier-Stokes-like systems, SIAM J. Math. Anal., 46 (2014), 1893-1921.  doi: 10.1137/130931631.  Google Scholar

[3]

A. C. BronziC. F. Mondaini and R. M. S. Rosa, Abstract framework for the theory of statistical solutions, J. Differential Equations, 260 (2016), 8428-8484.  doi: 10.1016/j.jde.2016.02.027.  Google Scholar

[4]

T. CaraballoP. E. Kloeden and J. Real, Invariant measures and statistical solutions of the globally modified Navier-Stokes equations, Discrete Contin. Dyn. Syst. -B, 10 (2008), 761-781.  doi: 10.3934/dcdsb.2008.10.761.  Google Scholar

[5]

T. CaraballoF. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities, J. Differential Equations, 253 (2012), 667-693.  doi: 10.1016/j.jde.2012.03.020.  Google Scholar

[6]

M. D. Chekroun and N. E. Glatt-Holtz, Invariant measures for dissipative dynamical systems: Abstract results and applications, Comm. Math. Phys., 316 (2012), 723-761.  doi: 10.1007/s00220-012-1515-y.  Google Scholar

[7]

I. Chueshov and A. Shcherbina, Semi-weak well-posedness and attractors for 2D Schrödinger-Boussinesq equations, Evolution Equations and Control Theory, 1 (2012), 57-80.  doi: 10.3934/eect.2012.1.57.  Google Scholar

[8]

T. Erneux and G. Nicolis, Propagating waves in discrete bistable reaction diffusion systems, Phys. D, 67 (1993), 237-244.  doi: 10.1016/0167-2789(93)90208-I.  Google Scholar

[9]

L. G. Farah and A. Pastor, On the periodic Schrödinger-Boussinesq system, J. Math. Anal. Appl., 368 (2010), 330-349.  doi: 10.1016/j.jmaa.2010.03.007.  Google Scholar

[10] C. FoiasO. ManleyR. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511546754.  Google Scholar
[11]

B. Guo and F. Chen, Finite dimensional behavior of global attractors for weakly damped nonlinear Schrödinger-Boussinesq equation, Phys. D, 93 (1996), 101-118.  doi: 10.1016/0167-2789(95)00277-4.  Google Scholar

[12]

B. Guo and X. Duo, The behavior of attractors for damped Schrödinger-Boussinesq equation, Comm. Nonlinear Sci. Numer. Simul., 6 (2001), 54-60.  doi: 10.1016/S1007-5704(01)90030-9.  Google Scholar

[13]

L. HanJ. Zhang and B. Guo, Global well-posedness for the fractional Schrödinger-Boussinesq system, Comm. Nonlinear Sci. Numer. Simul., 19 (2014), 2644-2652.  doi: 10.1016/j.cnsns.2013.12.032.  Google Scholar

[14]

X. Han and P. E. Kloden, Non-autonomous lattice systems with switching effects and delayed recovery, J. Differential Equations, 261 (2016), 2986-3009.  doi: 10.1016/j.jde.2016.05.015.  Google Scholar

[15]

X. HanP. E. Kloden and B. Usman, Upper semi-continuous convergence of attractors for a Hopfield-type lattice model, Nonlinearity, 33 (2020), 1881-1906.  doi: 10.1088/1361-6544/ab6813.  Google Scholar

[16]

X. HanW. Shen and S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266.  doi: 10.1016/j.jde.2010.10.018.  Google Scholar

[17]

Y. HeC. Li and J. Wang, Invariant measures and statistical solutions for the nonautonomous discrete modified Swift-Hohenberg equation, Bull. Malays. Math. Sci. Soc., 44 (2021), 3819-3837.  doi: 10.1007/s40840-021-01143-6.  Google Scholar

[18]

J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987), 556-572.  doi: 10.1137/0147038.  Google Scholar

[19]

P. E. KloedenP. Marín-Rubio and J. Real, Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations, Comm. Pure Appl. Anal., 8 (2009), 785-802.  doi: 10.3934/cpaa.2009.8.785.  Google Scholar

[20]

C. Li and J. Wang, On the forward dynamical behaviour of nonautonomous lattice dynamical systems, J. Differ. Equ. Appl., 27 (2021), 1052-1080.  doi: 10.1080/10236198.2021.1962850.  Google Scholar

[21]

Y. Li, On the initial boundary value problems for two dimensional systems of Zakharov equations and of complex-Schrödinger-real-Boussinesq equations, J. Partial Differential Equations, 5 (1992), 81-93.   Google Scholar

[22]

Y. Li and Q. Chen, Finite dimensional global attractor for dissipative Schrödinger-Boussinesq equations, J. Math. Anal. Appl., 205 (1997), 107-132.  doi: 10.1006/jmaa.1996.5148.  Google Scholar

[23]

G. Łukaszewicz, Pullback attractors and statistical solutions for 2-D Navier-Stokes equations, Discrete Contin. Dyn. Syst. -B, 9 (2008), 643-659.  doi: 10.3934/dcdsb.2008.9.643.  Google Scholar

[24]

G. ŁukaszewiczJ. Real and J. C. Robinson, Invariant measures for dissipative dynamical systems and generalised Banach limits, J. Dynam. Differential Equations, 23 (2011), 225-250.  doi: 10.1007/s10884-011-9213-6.  Google Scholar

[25]

G. Łukaszewicz and J. C. Robinson, Invariant measures for nonautonomous dissipative dynamical systems, Discrete Contin. Dyn. Syst., 34 (2014), 4211-4222.  doi: 10.3934/dcds.2014.34.4211.  Google Scholar

[26]

L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821-824.  doi: 10.1103/PhysRevLett.64.821.  Google Scholar

[27]

C. WangG. Xue and C. Zhao, Invariant Borel probability measures for discrete long-wave-short-wave resonance equations, Appl. Math. Comp., 339 (2018), 853-865.  doi: 10.1016/j.amc.2018.06.059.  Google Scholar

[28]

J. WangX. Zhang and C. Zhao, Statistical solutions for a nonautonomous modified Swift-Hohenberg equation, Math. Methods Appl. Sci., 44 (2021), 14502-14516.  doi: 10.1002/mma.7719.  Google Scholar

[29]

J. WangC. Zhao and T. Caraballo, Invariant measures for the 3D globally modified Navier-Stokes equations with unbounded variable delays, Comm. Nonlinear Sci. Numer. Simul., 91 (2020), 105459, 14 pp.  doi: 10.1016/j.cnsns.2020.105459.  Google Scholar

[30]

X. Wang, Upper semi-continuity of stationary statistical properties of dissipative systems, Discrete Contin. Dyn. Syst., 23 (2009), 521-540.  doi: 10.3934/dcds.2009.23.521.  Google Scholar

[31]

Y. Wang and K. Bai, Pullback attractors for a class of nonlinear lattices with delays, Discrete. Contin. Dyn. Syst. -B, 20 (2015), 1213-1230.  doi: 10.3934/dcdsb.2015.20.1213.  Google Scholar

[32]

Y. WangJ. Xu and P. E. Kloeden, Asymptotic behavior of stochastic lattice systems with a Caputo fractional time derivative, Nonlinear Anal. TMA, 135 (2016), 205-222.  doi: 10.1016/j.na.2016.01.020.  Google Scholar

[33]

S. Wu and J. Huang, Invariant measure and statistical solutions for nonautonomous discrete Klein-Gordon-Schrödinger type equations, J. Appl. Anal. Comput., 10 (2020), 1516-1533.  doi: 10.11948/20190243.  Google Scholar

[34]

Q. Xiao and C. Q. Li, Invariant Borel probability measures for the discrete three component reversible Gray-Scott model, Acta Mathematica Scientia-Series A, 2 (2021), 523-537.   Google Scholar

[35]

X. YangC. Zhao and J. Cao, Dynamics of the discrete coupled nonlinear Schrödinger-Boussinesq equations, Appl. Math. Comp., 219 (2013), 8508-8524.  doi: 10.1016/j.amc.2013.01.053.  Google Scholar

[36]

C. Zhao and T. Caraballo, Asymptotic regularity of trajectory attractor and trajectory statistical solution for the 3D globally modified Navier-Stokes equations, J. Differential Equations, 266 (2019), 7205-7229.  doi: 10.1016/j.jde.2018.11.032.  Google Scholar

[37]

C. ZhaoT. Caraballo and G. Łukaszewicz, Statistical solution and Liouville type theorem for the Klein-Gordon-Schrödinger equations, J. Differential Equations, 281 (2021), 1-32.  doi: 10.1016/j.jde.2021.01.039.  Google Scholar

[38]

C. ZhaoY. Li and T. Caraballo, Trajectory statistical solutions and Liouville type equations for evolution equations: Abstract results and applications, J. Differential Equations, 269 (2020), 467-494.  doi: 10.1016/j.jde.2019.12.011.  Google Scholar

[39]

C. ZhaoZ. Song and T. Caraballo, Strong trajectory statistical solutions and Liouville type equation for dissipative Euler equations, Appl. Math. Lett., 99 (2020), 105981, 6 pp.  doi: 10.1016/j.aml.2019.07.012.  Google Scholar

[40]

C. ZhaoG. Xue and G. Łukaszewicz, Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations, Discrete Contin. Dyn. Syst. -B, 23 (2018), 4021-4044.  doi: 10.3934/dcdsb.2018122.  Google Scholar

[41]

C. Zhao and L. Yang, Pullback attractors and invariant measures for the globally modified Navier-Stokes equations, Comm. Math. Sci., 15 (2017), 1565-1580.  doi: 10.4310/CMS.2017.v15.n6.a4.  Google Scholar

[42]

C. Zhao and S. Zhou, Compact kernel sections for nonautonomous Klein-Gordon-Schrödinger equations on infinite lattices, J. Math. Anal. Appl., 332 (2007), 32-56.  doi: 10.1016/j.jmaa.2006.10.002.  Google Scholar

[43]

C. Zhao and S. Zhou, Compact uniform attractors for dissipative lattice dynamical systems with delays, Discrete Contin. Dyn. Syst., 21 (2008), 643-663.  doi: 10.3934/dcds.2008.21.643.  Google Scholar

[44]

X. Zhao and S. Zhou, Kernel sections for processes and nonautonomous lattice systems, Discrete Contin. Dyn. Syst. -B, 9 (2008), 763-785.  doi: 10.3934/dcdsb.2008.9.763.  Google Scholar

[45]

S. Zhou, Attractors for first order dissipative lattice dynamical systems, Physica D, 178 (2003), 51-61.  doi: 10.1016/S0167-2789(02)00807-2.  Google Scholar

[46]

S. Zhou, Attractors and approximations for lattice dynamical systems, J. Differential Equations, 200 (2004), 342-368.  doi: 10.1016/j.jde.2004.02.005.  Google Scholar

[1]

Igor Chueshov, Alexey Shcherbina. Semi-weak well-posedness and attractors for 2D Schrödinger-Boussinesq equations. Evolution Equations & Control Theory, 2012, 1 (1) : 57-80. doi: 10.3934/eect.2012.1.57

[2]

Caidi Zhao, Gang Xue, Grzegorz Łukaszewicz. Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 4021-4044. doi: 10.3934/dcdsb.2018122

[3]

Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043

[4]

Zeqi Zhu, Caidi Zhao. Pullback attractor and invariant measures for the three-dimensional regularized MHD equations. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1461-1477. doi: 10.3934/dcds.2018060

[5]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021013

[6]

Chuangye Liu, Zhi-Qiang Wang. Synchronization of positive solutions for coupled Schrödinger equations. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 2795-2808. doi: 10.3934/dcds.2018118

[7]

Dan-Andrei Geba, Evan Witz. Revisited bilinear Schrödinger estimates with applications to generalized Boussinesq equations. Electronic Research Archive, 2020, 28 (2) : 627-649. doi: 10.3934/era.2020033

[8]

GUANGBING LI. Positive solution for quasilinear Schrödinger equations with a parameter. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1803-1816. doi: 10.3934/cpaa.2015.14.1803

[9]

Mostafa Abounouh, H. Al Moatassime, J. P. Chehab, S. Dumont, Olivier Goubet. Discrete Schrödinger equations and dissipative dynamical systems. Communications on Pure & Applied Analysis, 2008, 7 (2) : 211-227. doi: 10.3934/cpaa.2008.7.211

[10]

Olivier Goubet, Ezzeddine Zahrouni. Global attractor for damped forced nonlinear logarithmic Schrödinger equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 2933-2946. doi: 10.3934/dcdss.2020393

[11]

Salah Missaoui, Ezzeddine Zahrouni. Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system with cubic nonlinearities in $\mathbb{R}^2$. Communications on Pure & Applied Analysis, 2015, 14 (2) : 695-716. doi: 10.3934/cpaa.2015.14.695

[12]

W. Josh Sonnier, C. I. Christov. Repelling soliton collisions in coupled Schrödinger equations with negative cross modulation. Conference Publications, 2009, 2009 (Special) : 708-718. doi: 10.3934/proc.2009.2009.708

[13]

Shuangjie Peng, Huirong Pi. Spike vector solutions for some coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 2205-2227. doi: 10.3934/dcds.2016.36.2205

[14]

Juncheng Wei, Wei Yao. Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1003-1011. doi: 10.3934/cpaa.2012.11.1003

[15]

Chuangye Liu, Rushun Tian. Normalized solutions for 3-coupled nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5115-5130. doi: 10.3934/cpaa.2020229

[16]

Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789

[17]

Seunghyeok Kim. On vector solutions for coupled nonlinear Schrödinger equations with critical exponents. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1259-1277. doi: 10.3934/cpaa.2013.12.1259

[18]

M. D. Todorov, C. I. Christov. Conservative numerical scheme in complex arithmetic for coupled nonlinear Schrödinger equations. Conference Publications, 2007, 2007 (Special) : 982-992. doi: 10.3934/proc.2007.2007.982

[19]

Tai-Chia Lin, Tsung-Fang Wu. Existence and multiplicity of positive solutions for two coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 2911-2938. doi: 10.3934/dcds.2013.33.2911

[20]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 867-884. doi: 10.3934/cpaa.2020294

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (38)
  • HTML views (26)
  • Cited by (0)

Other articles
by authors

[Back to Top]