doi: 10.3934/dcdsb.2021312
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Boundary layer effects on ionic flows via Poisson-Nernst-Planck systems with nonuniform ion sizes

Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA

*Corresponding author: Mingji Zhang

Received  January 2021 Revised  December 2021 Early access January 2022

Fund Project: This work was supported by MPS Simons Foundation (No. 628308)

We study a one-dimensional Poisson-Nernst-Planck model with two oppositely charged particles, zero permanent charges and nonuniform finite ion sizes through a local hard-sphere model. Of particular interest is to examine the boundary layer effects on ionic flows systematically in terms of individual fluxes, the total flow rate of charges (current-voltage relations) and the total flow rate of matter. This is particularly important because boundary layers of charge are particularly likely to create artifacts over long distances, and this could dramatically affect the behavior of ionic flows. Several critical potentials are identified, which play unique and critical roles in examining the dynamics of ionic flows. Some can be estimated experimentally. Numerical simulations are performed for a better understanding and further illustrating our analytical results. We believe the analysis can provide complementary information of the qualitative properties of ionic flows and help one better understand the mechanism of ionic flow through membrane channels.

Citation: Jianing Chen, Mingji Zhang. Boundary layer effects on ionic flows via Poisson-Nernst-Planck systems with nonuniform ion sizes. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021312
References:
[1]

N. AbaidR. S. Eisenberg and W. Liu, Asymptotic expansions of Ⅰ-Ⅴ relations via a Poisson-Nernst-Planck system, SIAM J. Appl. Dyn. Syst., 7 (2008), 1507-1526.  doi: 10.1137/070691322.  Google Scholar

[2]

R. AitbayevP. W. BatesH. LuL. Zhang and M. Zhang, Mathematical studies of Poisson-Nernst-Planck systems: Dynamics of ionic flows without electroneutrality conditions, J. Comput. Appl. Math., 362 (2019), 510-527.  doi: 10.1016/j.cam.2018.10.037.  Google Scholar

[3]

B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson, Molecular Biology of the Cell, 3$^{rd}$ edtioon, Garland, New York, 1994. Google Scholar

[4]

V. Barcilon, Ion flow through narrow membrane channels: Part Ⅰ, SIAM J. Appl. Math., 52 (1992), 1391-1404.  doi: 10.1137/0152080.  Google Scholar

[5]

V. BarcilonD.-P. Chen and R. S. Eisenberg, Ion flow through narrow membrane channels: Part Ⅱ, SIAM J. Appl. Math., 52 (1992), 1405-1425.  doi: 10.1137/0152081.  Google Scholar

[6]

V. BarcilonD.-P. ChenR. S. Eisenberg and J. W. Jerome, Qualitative properties of steady-state Poisson-Nernst-Planck systems: Perturbation and simulation study, SIAM J. Appl. Math., 57 (1997), 631-648.  doi: 10.1137/S0036139995312149.  Google Scholar

[7]

J. Barthel, H. Krienke and W. Kunz, Physical Chemistry of Electrolyte Solutions: Modern Aspects, Springer-Verlag, New York, 1998. Google Scholar

[8]

P. W. BatesJ. Chen and M. Zhang, Dynamics of ionic flows via Poisson-Nernst-Planck systems with local hard-sphere potentials: Competition between cations, Math. Biosci. Eng., 17 (2020), 3736-3766.  doi: 10.3934/mbe.2020210.  Google Scholar

[9]

P. W. BatesY. JiaG. LinH. Lu and M. Zhang, Individual flux study via steady-state Poisson-Nernst-Planck systems: Effects from boundary conditions, SIAM J. Appl. Dyn. Syst., 16 (2017), 410-430.  doi: 10.1137/16M1071523.  Google Scholar

[10]

P. W. BatesW. LiuH. Lu and M. Zhang, Ion size and valence effects on ionic flows via Poisson-Nernst-Planck systems, Commun. Math. Sci., 15 (2017), 881-901.  doi: 10.4310/CMS.2017.v15.n4.a1.  Google Scholar

[11]

P. W. Bates, Z. Wen and M. Zhang, Small permanent charge effects on individual fluxes via Poisson-Nernst-Planck models with multiple cations, J. Nonlinear Sci., 31 (2021), Paper No. 55, 62 pp. doi: 10.1007/s00332-021-09715-3.  Google Scholar

[12]

M. BazantK. Thornton and A. Ajdari, Diffuse-charge dynamics in electrochemical systems, Phys. Review E, 70 (2004), 1-24.  doi: 10.1103/PhysRevE.70.021506.  Google Scholar

[13]

M. Z. BazantK. T. Chu and B. J. Bayly, Current-voltage relations for electrochemical thin films, SIAM J. Appl. Math., 65 (2005), 1463-1484.  doi: 10.1137/040609938.  Google Scholar

[14]

D. BodaD. BusathB. EisenbergD. Henderson and W. Nonner, Monte Carlo simulations of ion selectivity in a biological Na+ channel: Charge-space competition, Phys. Chem. Chem. Phys., 4 (2002), 5154-5160.  doi: 10.1039/B203686J.  Google Scholar

[15]

D. P. Chen and R. S. Eisenberg, Charges, currents and potentials in ionic channels of one conformation, Biophys. J., 64 (1993), 1405-1421.  doi: 10.1016/S0006-3495(93)81507-8.  Google Scholar

[16]

J. ChenY. WangL. Zhang and M. Zhang, Mathematical analysis of Poisson-Nernst-Planck models with permanent charges and boundary layers: Studies on individual fluxes, Nonlinearity, 34 (2021), 3879-3906.  doi: 10.1088/1361-6544/abf33a.  Google Scholar

[17]

B. Eisenberg, Proteins, channels, and crowded ions, Biophysical Chemistry, 100 (2003), 507-517.   Google Scholar

[18]

R. S. Eisenberg, Channels as enzymes, J. Memb. Biol., 115 (1990), 1-12.  doi: 10.1007/BF01869101.  Google Scholar

[19]

R. S. Eisenberg, Atomic biology, electrostatics and ionic channels, Advanced Series in Physical ChemistryRecent Developments in Theoretical Studies of Proteins, (1996), 269–357. doi: 10.1142/9789814261418_0005.  Google Scholar

[20]

B. Eisenberg, Y. Hyon and C. Liu, Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids, J. Chem. Phys., 133 (2010), 104104, 1–23. doi: 10.1063/1.3476262.  Google Scholar

[21]

B. Eisenberg and W. Liu, Poisson-Nernst-Planck systems for ion channels with permanent charges, SIAM J. Math. Anal., 38 (2007), 1932-1966.  doi: 10.1137/060657480.  Google Scholar

[22]

B. EisenbergW. Liu and H. Xu, Reversal charge and reversal potential: Case studies via classical Poisson-Nernst-Planck models, Nonlinearity, 28 (2015), 103-127.  doi: 10.1088/0951-7715/28/1/103.  Google Scholar

[23]

D. Gillespie, A Singular Perturbation Analysis of the Poisson-Nernst-Planck System: Applications to Ionic CDhannels, Thesis (Ph.D.)¨CRush University, College of Nursing. 1999.  Google Scholar

[24]

D. Gillespie and R. S. Eisenberg, Modified Donnan potentials for ion transport through biological ion channels, Phys. Rev. E, 63 (2001), 061902.  doi: 10.1103/PhysRevE.63.061902.  Google Scholar

[25]

D. GillespieL. XuY. Wang and G. Meissner, (De)constructing the ryanodine receptor: Modeling ion permeation and selectivity of the calcium release channel, J. Phys. Chem. B, 109 (2005), 15598-15610.  doi: 10.1021/jp052471j.  Google Scholar

[26]

D. Gillespie and R. S. Eisenberg, Physical descriptions of experimental selectivity measurements in ion channels, European Biophys. J., 31 (2002), 454-466.  doi: 10.1007/s00249-002-0239-x.  Google Scholar

[27]

D. GillespieW. Nonner and R. S. Eisenberg, Coupling Poisson-Nernst-Planck and density functional theory to calculate ion flux, Journal of Physics: Condensed Matter, 14 (2002), 12129-12145.  doi: 10.1088/0953-8984/14/46/317.  Google Scholar

[28]

D. GillespieW. Nonner and R. S. Eisenberg, Density functional theory of charged, hard-sphere fluids, Phys. Rev. E, 68 (2003), 0313503.  doi: 10.1103/PhysRevE.68.031503.  Google Scholar

[29]

L. J. Henderson, The Fitness of the Environment: An Inquiry Into the Biological Significance of the Properties of Matter, Macmillan, New York, 1927. Google Scholar

[30]

Y. HyonB. Eisenberg and C. Liu, A mathematical model for the hard sphere repulsion in ionic solutions, Commun. Math. Sci., 9 (2011), 459-475.  doi: 10.4310/CMS.2011.v9.n2.a5.  Google Scholar

[31]

Y. Hyon, J. Fonseca, B. Eisenberg and C. Liu, A new Poisson-Nernst-Planck equation (PNP-FS-IF) for charge inversion near walls, Biophys. J., 100 (2011), pp. 578a. doi: 10.1016/j.bpj.2010.12.3342.  Google Scholar

[32]

Y. HyonC. Liu and B. Eisenberg, PNP equations with steric effects: A model of ion flow through channels, J. Phys. Chem. B, 116 (2012), 11422-11441.   Google Scholar

[33]

W. Im and B. Roux, Ion permeation and selectivity of OmpF porin: A theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory, J. Mol. Biol., 322 (2002), 851-869.  doi: 10.1016/S0022-2836(02)00778-7.  Google Scholar

[34]

S. JiB. Eisenberg and W. Liu, Flux ratios and channel structures, J. Dynam. Differential Equations, 31 (2019), 1141-1183.  doi: 10.1007/s10884-017-9607-1.  Google Scholar

[35]

S. Ji and W. Liu, Poisson-Nernst-Planck systems for ion flow with density functional theory for hard-sphere potential: Ⅰ-Ⅴ relations and critical potentials. Part Ⅰ: Analysis, J. Dynam. Differential Equations, 24 (2012), 955-983.  doi: 10.1007/s10884-012-9277-y.  Google Scholar

[36]

S. JiW. Liu and M. Zhang, Effects of (small) permanent charges and channel geometry on ionic flows via classical Poisson-Nernst-Planck models, SIAM J. Appl. Math., 75 (2015), 114-135.  doi: 10.1137/140992527.  Google Scholar

[37]

Y. JiaW. Liu and M. Zhang, Qualitative properties of ionic flows via Poisson-Nernst-Planck systems with Bikerman's local hard-sphere potential: Ion size effects, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1775-1802.  doi: 10.3934/dcdsb.2016022.  Google Scholar

[38]

M. S. KilicM. Z. Bazant and A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. Ⅱ. Modified Poisson-Nernst-Planck equations, Phys. Rev. E, 75 (2007), 021503.  doi: 10.1103/PhysRevE.75.021503.  Google Scholar

[39]

G. LinW. LiuY. Yi and M. Zhang, Poisson-Nernst-Planck systems for ion flow with density functional theory for local hard-sphere potential, SIAM J. Appl. Dyn. Syst., 12 (2013), 1613-1648.  doi: 10.1137/120904056.  Google Scholar

[40]

W. Liu, Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems, SIAM J. Appl. Math., 65 (2005), 754-766.  doi: 10.1137/S0036139903420931.  Google Scholar

[41]

W. Liu, One-dimensional steady-state Poisson-Nernst-Planck systems for ion channels with multiple ion species, J. Differential Equations, 246 (2009), 428-451.  doi: 10.1016/j.jde.2008.09.010.  Google Scholar

[42]

J. L. Liu and B. Eisenberg, Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels, J. Chem. Phys., 141 (2014), 12B640.   Google Scholar

[43]

W. Liu and H. Xu, A complete analysis of a classical Poisson-Nernst-Planck model for ionic flow, J. Differential Equations, 258 (2015), 1192-1228.  doi: 10.1016/j.jde.2014.10.015.  Google Scholar

[44]

W. Liu and B. Wang, Poisson-Nernst-Planck systems for narrow tubular-like membrane channels, J. Dynam. Differential Equations, 22 (2010), 413-437.  doi: 10.1007/s10884-010-9186-x.  Google Scholar

[45]

H. LuJ. LiJ. ShackelfordJ. Vorenberg and M. Zhang, Ion size effects on individual fluxes via Poisson-Nernst-Planck systems with Bikerman's local hard-sphere potential: Analysis without electroneutrality boundary conditions, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1623-1643.  doi: 10.3934/dcdsb.2018064.  Google Scholar

[46]

W. LiuX. Tu and M. Zhang, Poisson-Nernst-Planck systems for ion flow with density functional theory for hard-sphere potential: Ⅰ-Ⅴ relations and critical potentials. part Ⅱ: Numerics, J. Dynam. Differential Equations, 24 (2012), 985-1004.  doi: 10.1007/s10884-012-9278-x.  Google Scholar

[47]

W. Nonner and R. S. Eisenberg, Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type Calcium channels, Biophys. J., 75 (1998), 1287-1305.  doi: 10.1016/S0006-3495(98)74048-2.  Google Scholar

[48]

J.-K. Park and J. W. Jerome, Qualitative properties of steady-state Poisson-Nernst-Planck systems: Mathematical study, SIAM J. Appl. Math., 57 (1997), 609-630.  doi: 10.1137/S0036139995279809.  Google Scholar

[49]

Y. Rosenfeld, Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing, Phys. Rev. Lett., 63 (1989), 980-983.  doi: 10.1103/PhysRevLett.63.980.  Google Scholar

[50]

Y. Rosenfeld, Free energy model for the inhomogeneous fluid mixtures: Yukawa-charged hard spheres, general interactions, and plasmas, J. Chem. Phys., 98 (1993), 8126-8148.  doi: 10.1063/1.464569.  Google Scholar

[51]

D. J. Rouston, Bipolar Semiconductor Devices, McGraw-Hill, New York, 1990. Google Scholar

[52]

B. RouxT. W. AllenS. Berneche and W. Im, Theoretical and computational models of biological ion channels, Quat. Rev. Biophys., 37 (2004), 15-103.  doi: 10.1017/S0033583504003968.  Google Scholar

[53]

B. Roux and S. Crouzy, Theoretical studies of activated processes in biological ion channels, Classical and Quantum Dynamics in Condensed Phase Simulations, (1998), 445-462.  doi: 10.1142/9789812839664_0019.  Google Scholar

[54]

Z. SchussB. Nadler and R. S. Eisenberg, Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model, Phys. Rev. E, 64 (2001), 1-14.  doi: 10.1103/PhysRevE.64.036116.  Google Scholar

[55]

B. G. Streetman, Solid State Electronic Devices, 4$^{th}$ edition, Prentice-Hall, Englewood Cliffs, NJ, 1972. Google Scholar

[56]

L. Sun and W. Liu, Non-localness of excess potentials and boundary value problems of Poisson-Nernst-Planck systems for ionic flow: A case study, J. Dynam. Differential Equations, 30 (2018), 779-797.  doi: 10.1007/s10884-017-9578-2.  Google Scholar

[57] C. Tanford and J. Reynolds, Nature's Robots: A History of Proteins, Oxford University Press, New York, 2001.   Google Scholar
[58]

Z. WenP. W. Bates and M. Zhang, Effects on Ⅰ-Ⅴ relations from small permanent charge and channel geometry via classical Poisson-Nernst-Planck equations with multiple cations, Nonlinearity, 34 (2021), 4464-4502.  doi: 10.1088/1361-6544/abfae8.  Google Scholar

[59]

Z. WenL. Zhang and M. Zhang, Dynamics of classical Poisson-Nernst-Planck systems with multiple cations and boundary layers, J. Dyn. Diff. Equat., 33 (2021), 211-234.  doi: 10.1007/s10884-020-09861-4.  Google Scholar

[60]

M. Zhang, Asymptotic expansions and numerical simulations of Ⅰ-Ⅴ relations via a steady-state Poisson-Nernst-Planck system, Rocky Mountain J. Math., 45 (2015), 1681-1708.  doi: 10.1216/RMJ-2015-45-5-1681.  Google Scholar

[61]

M. Zhang, Boundary layer effects on ionic flows via classical Poisson-Nernst-Planck systems, Comput. Math. Biophys., 6 (2018), 14-27.  doi: 10.1515/cmb-2018-0002.  Google Scholar

[62]

M. Zhang, Competition between cations via Poisson-Nernst-Planck systems with nonzero but small permanent charges, Membranes, 11 (2021), 236.   Google Scholar

[63]

Q. Zheng and G. W. Wei, Poisson-Boltzmann-Nernst-Planck model, J. Chem. Phys., 134 (2011), 1-17.  doi: 10.1063/1.3581031.  Google Scholar

[64]

L. Zhang and W. Liu, Effects of large permanent charges on ionic flows via Poisson-Nernst-Planck models, SIAM J. Appl. Dyn. Syst., 19 (2020), 1993-2029.  doi: 10.1137/19M1289443.  Google Scholar

[65]

S. ZhouZ. Wang and B. Li, Mean-field description of ionic size effects with nonuniform ionic sizes: A numerical approach, Phy. Rev. E, 84 (2011), 1-13.  doi: 10.1103/PhysRevE.84.021901.  Google Scholar

show all references

References:
[1]

N. AbaidR. S. Eisenberg and W. Liu, Asymptotic expansions of Ⅰ-Ⅴ relations via a Poisson-Nernst-Planck system, SIAM J. Appl. Dyn. Syst., 7 (2008), 1507-1526.  doi: 10.1137/070691322.  Google Scholar

[2]

R. AitbayevP. W. BatesH. LuL. Zhang and M. Zhang, Mathematical studies of Poisson-Nernst-Planck systems: Dynamics of ionic flows without electroneutrality conditions, J. Comput. Appl. Math., 362 (2019), 510-527.  doi: 10.1016/j.cam.2018.10.037.  Google Scholar

[3]

B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson, Molecular Biology of the Cell, 3$^{rd}$ edtioon, Garland, New York, 1994. Google Scholar

[4]

V. Barcilon, Ion flow through narrow membrane channels: Part Ⅰ, SIAM J. Appl. Math., 52 (1992), 1391-1404.  doi: 10.1137/0152080.  Google Scholar

[5]

V. BarcilonD.-P. Chen and R. S. Eisenberg, Ion flow through narrow membrane channels: Part Ⅱ, SIAM J. Appl. Math., 52 (1992), 1405-1425.  doi: 10.1137/0152081.  Google Scholar

[6]

V. BarcilonD.-P. ChenR. S. Eisenberg and J. W. Jerome, Qualitative properties of steady-state Poisson-Nernst-Planck systems: Perturbation and simulation study, SIAM J. Appl. Math., 57 (1997), 631-648.  doi: 10.1137/S0036139995312149.  Google Scholar

[7]

J. Barthel, H. Krienke and W. Kunz, Physical Chemistry of Electrolyte Solutions: Modern Aspects, Springer-Verlag, New York, 1998. Google Scholar

[8]

P. W. BatesJ. Chen and M. Zhang, Dynamics of ionic flows via Poisson-Nernst-Planck systems with local hard-sphere potentials: Competition between cations, Math. Biosci. Eng., 17 (2020), 3736-3766.  doi: 10.3934/mbe.2020210.  Google Scholar

[9]

P. W. BatesY. JiaG. LinH. Lu and M. Zhang, Individual flux study via steady-state Poisson-Nernst-Planck systems: Effects from boundary conditions, SIAM J. Appl. Dyn. Syst., 16 (2017), 410-430.  doi: 10.1137/16M1071523.  Google Scholar

[10]

P. W. BatesW. LiuH. Lu and M. Zhang, Ion size and valence effects on ionic flows via Poisson-Nernst-Planck systems, Commun. Math. Sci., 15 (2017), 881-901.  doi: 10.4310/CMS.2017.v15.n4.a1.  Google Scholar

[11]

P. W. Bates, Z. Wen and M. Zhang, Small permanent charge effects on individual fluxes via Poisson-Nernst-Planck models with multiple cations, J. Nonlinear Sci., 31 (2021), Paper No. 55, 62 pp. doi: 10.1007/s00332-021-09715-3.  Google Scholar

[12]

M. BazantK. Thornton and A. Ajdari, Diffuse-charge dynamics in electrochemical systems, Phys. Review E, 70 (2004), 1-24.  doi: 10.1103/PhysRevE.70.021506.  Google Scholar

[13]

M. Z. BazantK. T. Chu and B. J. Bayly, Current-voltage relations for electrochemical thin films, SIAM J. Appl. Math., 65 (2005), 1463-1484.  doi: 10.1137/040609938.  Google Scholar

[14]

D. BodaD. BusathB. EisenbergD. Henderson and W. Nonner, Monte Carlo simulations of ion selectivity in a biological Na+ channel: Charge-space competition, Phys. Chem. Chem. Phys., 4 (2002), 5154-5160.  doi: 10.1039/B203686J.  Google Scholar

[15]

D. P. Chen and R. S. Eisenberg, Charges, currents and potentials in ionic channels of one conformation, Biophys. J., 64 (1993), 1405-1421.  doi: 10.1016/S0006-3495(93)81507-8.  Google Scholar

[16]

J. ChenY. WangL. Zhang and M. Zhang, Mathematical analysis of Poisson-Nernst-Planck models with permanent charges and boundary layers: Studies on individual fluxes, Nonlinearity, 34 (2021), 3879-3906.  doi: 10.1088/1361-6544/abf33a.  Google Scholar

[17]

B. Eisenberg, Proteins, channels, and crowded ions, Biophysical Chemistry, 100 (2003), 507-517.   Google Scholar

[18]

R. S. Eisenberg, Channels as enzymes, J. Memb. Biol., 115 (1990), 1-12.  doi: 10.1007/BF01869101.  Google Scholar

[19]

R. S. Eisenberg, Atomic biology, electrostatics and ionic channels, Advanced Series in Physical ChemistryRecent Developments in Theoretical Studies of Proteins, (1996), 269–357. doi: 10.1142/9789814261418_0005.  Google Scholar

[20]

B. Eisenberg, Y. Hyon and C. Liu, Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids, J. Chem. Phys., 133 (2010), 104104, 1–23. doi: 10.1063/1.3476262.  Google Scholar

[21]

B. Eisenberg and W. Liu, Poisson-Nernst-Planck systems for ion channels with permanent charges, SIAM J. Math. Anal., 38 (2007), 1932-1966.  doi: 10.1137/060657480.  Google Scholar

[22]

B. EisenbergW. Liu and H. Xu, Reversal charge and reversal potential: Case studies via classical Poisson-Nernst-Planck models, Nonlinearity, 28 (2015), 103-127.  doi: 10.1088/0951-7715/28/1/103.  Google Scholar

[23]

D. Gillespie, A Singular Perturbation Analysis of the Poisson-Nernst-Planck System: Applications to Ionic CDhannels, Thesis (Ph.D.)¨CRush University, College of Nursing. 1999.  Google Scholar

[24]

D. Gillespie and R. S. Eisenberg, Modified Donnan potentials for ion transport through biological ion channels, Phys. Rev. E, 63 (2001), 061902.  doi: 10.1103/PhysRevE.63.061902.  Google Scholar

[25]

D. GillespieL. XuY. Wang and G. Meissner, (De)constructing the ryanodine receptor: Modeling ion permeation and selectivity of the calcium release channel, J. Phys. Chem. B, 109 (2005), 15598-15610.  doi: 10.1021/jp052471j.  Google Scholar

[26]

D. Gillespie and R. S. Eisenberg, Physical descriptions of experimental selectivity measurements in ion channels, European Biophys. J., 31 (2002), 454-466.  doi: 10.1007/s00249-002-0239-x.  Google Scholar

[27]

D. GillespieW. Nonner and R. S. Eisenberg, Coupling Poisson-Nernst-Planck and density functional theory to calculate ion flux, Journal of Physics: Condensed Matter, 14 (2002), 12129-12145.  doi: 10.1088/0953-8984/14/46/317.  Google Scholar

[28]

D. GillespieW. Nonner and R. S. Eisenberg, Density functional theory of charged, hard-sphere fluids, Phys. Rev. E, 68 (2003), 0313503.  doi: 10.1103/PhysRevE.68.031503.  Google Scholar

[29]

L. J. Henderson, The Fitness of the Environment: An Inquiry Into the Biological Significance of the Properties of Matter, Macmillan, New York, 1927. Google Scholar

[30]

Y. HyonB. Eisenberg and C. Liu, A mathematical model for the hard sphere repulsion in ionic solutions, Commun. Math. Sci., 9 (2011), 459-475.  doi: 10.4310/CMS.2011.v9.n2.a5.  Google Scholar

[31]

Y. Hyon, J. Fonseca, B. Eisenberg and C. Liu, A new Poisson-Nernst-Planck equation (PNP-FS-IF) for charge inversion near walls, Biophys. J., 100 (2011), pp. 578a. doi: 10.1016/j.bpj.2010.12.3342.  Google Scholar

[32]

Y. HyonC. Liu and B. Eisenberg, PNP equations with steric effects: A model of ion flow through channels, J. Phys. Chem. B, 116 (2012), 11422-11441.   Google Scholar

[33]

W. Im and B. Roux, Ion permeation and selectivity of OmpF porin: A theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory, J. Mol. Biol., 322 (2002), 851-869.  doi: 10.1016/S0022-2836(02)00778-7.  Google Scholar

[34]

S. JiB. Eisenberg and W. Liu, Flux ratios and channel structures, J. Dynam. Differential Equations, 31 (2019), 1141-1183.  doi: 10.1007/s10884-017-9607-1.  Google Scholar

[35]

S. Ji and W. Liu, Poisson-Nernst-Planck systems for ion flow with density functional theory for hard-sphere potential: Ⅰ-Ⅴ relations and critical potentials. Part Ⅰ: Analysis, J. Dynam. Differential Equations, 24 (2012), 955-983.  doi: 10.1007/s10884-012-9277-y.  Google Scholar

[36]

S. JiW. Liu and M. Zhang, Effects of (small) permanent charges and channel geometry on ionic flows via classical Poisson-Nernst-Planck models, SIAM J. Appl. Math., 75 (2015), 114-135.  doi: 10.1137/140992527.  Google Scholar

[37]

Y. JiaW. Liu and M. Zhang, Qualitative properties of ionic flows via Poisson-Nernst-Planck systems with Bikerman's local hard-sphere potential: Ion size effects, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1775-1802.  doi: 10.3934/dcdsb.2016022.  Google Scholar

[38]

M. S. KilicM. Z. Bazant and A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. Ⅱ. Modified Poisson-Nernst-Planck equations, Phys. Rev. E, 75 (2007), 021503.  doi: 10.1103/PhysRevE.75.021503.  Google Scholar

[39]

G. LinW. LiuY. Yi and M. Zhang, Poisson-Nernst-Planck systems for ion flow with density functional theory for local hard-sphere potential, SIAM J. Appl. Dyn. Syst., 12 (2013), 1613-1648.  doi: 10.1137/120904056.  Google Scholar

[40]

W. Liu, Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems, SIAM J. Appl. Math., 65 (2005), 754-766.  doi: 10.1137/S0036139903420931.  Google Scholar

[41]

W. Liu, One-dimensional steady-state Poisson-Nernst-Planck systems for ion channels with multiple ion species, J. Differential Equations, 246 (2009), 428-451.  doi: 10.1016/j.jde.2008.09.010.  Google Scholar

[42]

J. L. Liu and B. Eisenberg, Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels, J. Chem. Phys., 141 (2014), 12B640.   Google Scholar

[43]

W. Liu and H. Xu, A complete analysis of a classical Poisson-Nernst-Planck model for ionic flow, J. Differential Equations, 258 (2015), 1192-1228.  doi: 10.1016/j.jde.2014.10.015.  Google Scholar

[44]

W. Liu and B. Wang, Poisson-Nernst-Planck systems for narrow tubular-like membrane channels, J. Dynam. Differential Equations, 22 (2010), 413-437.  doi: 10.1007/s10884-010-9186-x.  Google Scholar

[45]

H. LuJ. LiJ. ShackelfordJ. Vorenberg and M. Zhang, Ion size effects on individual fluxes via Poisson-Nernst-Planck systems with Bikerman's local hard-sphere potential: Analysis without electroneutrality boundary conditions, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1623-1643.  doi: 10.3934/dcdsb.2018064.  Google Scholar

[46]

W. LiuX. Tu and M. Zhang, Poisson-Nernst-Planck systems for ion flow with density functional theory for hard-sphere potential: Ⅰ-Ⅴ relations and critical potentials. part Ⅱ: Numerics, J. Dynam. Differential Equations, 24 (2012), 985-1004.  doi: 10.1007/s10884-012-9278-x.  Google Scholar

[47]

W. Nonner and R. S. Eisenberg, Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type Calcium channels, Biophys. J., 75 (1998), 1287-1305.  doi: 10.1016/S0006-3495(98)74048-2.  Google Scholar

[48]

J.-K. Park and J. W. Jerome, Qualitative properties of steady-state Poisson-Nernst-Planck systems: Mathematical study, SIAM J. Appl. Math., 57 (1997), 609-630.  doi: 10.1137/S0036139995279809.  Google Scholar

[49]

Y. Rosenfeld, Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing, Phys. Rev. Lett., 63 (1989), 980-983.  doi: 10.1103/PhysRevLett.63.980.  Google Scholar

[50]

Y. Rosenfeld, Free energy model for the inhomogeneous fluid mixtures: Yukawa-charged hard spheres, general interactions, and plasmas, J. Chem. Phys., 98 (1993), 8126-8148.  doi: 10.1063/1.464569.  Google Scholar

[51]

D. J. Rouston, Bipolar Semiconductor Devices, McGraw-Hill, New York, 1990. Google Scholar

[52]

B. RouxT. W. AllenS. Berneche and W. Im, Theoretical and computational models of biological ion channels, Quat. Rev. Biophys., 37 (2004), 15-103.  doi: 10.1017/S0033583504003968.  Google Scholar

[53]

B. Roux and S. Crouzy, Theoretical studies of activated processes in biological ion channels, Classical and Quantum Dynamics in Condensed Phase Simulations, (1998), 445-462.  doi: 10.1142/9789812839664_0019.  Google Scholar

[54]

Z. SchussB. Nadler and R. S. Eisenberg, Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model, Phys. Rev. E, 64 (2001), 1-14.  doi: 10.1103/PhysRevE.64.036116.  Google Scholar

[55]

B. G. Streetman, Solid State Electronic Devices, 4$^{th}$ edition, Prentice-Hall, Englewood Cliffs, NJ, 1972. Google Scholar

[56]

L. Sun and W. Liu, Non-localness of excess potentials and boundary value problems of Poisson-Nernst-Planck systems for ionic flow: A case study, J. Dynam. Differential Equations, 30 (2018), 779-797.  doi: 10.1007/s10884-017-9578-2.  Google Scholar

[57] C. Tanford and J. Reynolds, Nature's Robots: A History of Proteins, Oxford University Press, New York, 2001.   Google Scholar
[58]

Z. WenP. W. Bates and M. Zhang, Effects on Ⅰ-Ⅴ relations from small permanent charge and channel geometry via classical Poisson-Nernst-Planck equations with multiple cations, Nonlinearity, 34 (2021), 4464-4502.  doi: 10.1088/1361-6544/abfae8.  Google Scholar

[59]

Z. WenL. Zhang and M. Zhang, Dynamics of classical Poisson-Nernst-Planck systems with multiple cations and boundary layers, J. Dyn. Diff. Equat., 33 (2021), 211-234.  doi: 10.1007/s10884-020-09861-4.  Google Scholar

[60]

M. Zhang, Asymptotic expansions and numerical simulations of Ⅰ-Ⅴ relations via a steady-state Poisson-Nernst-Planck system, Rocky Mountain J. Math., 45 (2015), 1681-1708.  doi: 10.1216/RMJ-2015-45-5-1681.  Google Scholar

[61]

M. Zhang, Boundary layer effects on ionic flows via classical Poisson-Nernst-Planck systems, Comput. Math. Biophys., 6 (2018), 14-27.  doi: 10.1515/cmb-2018-0002.  Google Scholar

[62]

M. Zhang, Competition between cations via Poisson-Nernst-Planck systems with nonzero but small permanent charges, Membranes, 11 (2021), 236.   Google Scholar

[63]

Q. Zheng and G. W. Wei, Poisson-Boltzmann-Nernst-Planck model, J. Chem. Phys., 134 (2011), 1-17.  doi: 10.1063/1.3581031.  Google Scholar

[64]

L. Zhang and W. Liu, Effects of large permanent charges on ionic flows via Poisson-Nernst-Planck models, SIAM J. Appl. Dyn. Syst., 19 (2020), 1993-2029.  doi: 10.1137/19M1289443.  Google Scholar

[65]

S. ZhouZ. Wang and B. Li, Mean-field description of ionic size effects with nonuniform ionic sizes: A numerical approach, Phy. Rev. E, 84 (2011), 1-13.  doi: 10.1103/PhysRevE.84.021901.  Google Scholar

Figure 1.  Graph of function $ F(x) $ as $ (\sigma, \rho)\to (1^+,1^{-}) $ with $ \sigma+\rho<2 $ helps understand the result stated in Lemma 3.2. To be specific, the graph corresponds to the statement (ii) of the lemma with $ \lambda>1 $
Figure 2.  Function $ J_{11}(V) $ (solid line) for $ x>x_2^* $ (left figure) and $ 1<x<x_2^* $ (right figure) with $ \sigma = 1.001 $ and $ \rho = 0.998 $, where $ x_2^* = 1.01978 $; and function $ J_{11}^{EN}(V) $ (dashed line with star) with $ \sigma = \rho = 1 $. In the left figure, the slope of $ J_{11} $ is $ 0.291 $ while the one of $ J_{11}^{EN} $ is $ 0.29 $
Figure 3.  Function $ J_{21}(V) $ (solid line) for $ x>x_2^* $ (left figure) and $ 1<x<x_2^* $ (right figure) with $ \sigma = 1.001 $ and $ \rho = 0.998 $, where $ x_2^* = 1.01978 $; and function $ J_{21}^{EN}(V) $ (dashed line with star) with $ \sigma = \rho = 1 $. In the left figure, the slope of $ J_{21} $ is $ -0.291 $ while the one of $ J_{21}^{EN} $ is $ -0.29 $
Figure 4.  Function $ I_{1}(V) $ (solid line) for $ x>x_2^{*} $ (left figure) and $ 1<x<x_2^{*} $ (right figure) with $ \sigma = 1.001 $ and $ \rho = 0.998 $, where $ x_2^* = 1.01978 $; and function $ I_{1}^{EN}(V) $ (dashed line with star) with $ \sigma = \rho = 1 $. In the left figure, the slope of $ I_{1} $ is $ 9.7945\times10^{-10} $ while the one of $ I_{1}^{EN} $ is $ 9.7617\times10^{-10} $
Figure 5.  Function $ T_{1}(V) $ for $ x>x_2^{*} $ (left figure) and $ 1<x<x_2^{*} $ (right figure)with $ \sigma = 1.001 $ and $ \rho = 0.998 $, where $ x_2^* = 1.01978 $; and function $ T_{1}^{EN}(V) $ (dashed line with star) with $ \sigma = \rho = 1 $. In the left figure, the slope of $ T_{1} $ is $ -2.0311\times 10^{-10} $ while the one of $ T_{1}^{EN} $ is $ -2.0243\times 10^{-10} $
[1]

Hong Lu, Ji Li, Joseph Shackelford, Jeremy Vorenberg, Mingji Zhang. Ion size effects on individual fluxes via Poisson-Nernst-Planck systems with Bikerman's local hard-sphere potential: Analysis without electroneutrality boundary conditions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1623-1643. doi: 10.3934/dcdsb.2018064

[2]

Joseph W. Jerome. Nonlinear conformation response in the finite channel: Existence of a unique solution for the dynamic PNP model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2465-2482. doi: 10.3934/dcdsb.2012.17.2465

[3]

R. Estrada. Boundary layers and spectral content asymptotics. Conference Publications, 1998, 1998 (Special) : 242-252. doi: 10.3934/proc.1998.1998.242

[4]

Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315

[5]

Miles H. Wheeler. On stratified water waves with critical layers and Coriolis forces. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4747-4770. doi: 10.3934/dcds.2019193

[6]

Calin Iulian Martin, Adrián Rodríguez-Sanjurjo. Dispersion relations for steady periodic water waves of fixed mean-depth with two rotational layers. Discrete & Continuous Dynamical Systems, 2019, 39 (9) : 5149-5169. doi: 10.3934/dcds.2019209

[7]

Gung-Min Gie, Makram Hamouda, Roger Témam. Boundary layers in smooth curvilinear domains: Parabolic problems. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1213-1240. doi: 10.3934/dcds.2010.26.1213

[8]

Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91-102. doi: 10.3934/era.2020006

[9]

Casey Jao. Energy-critical NLS with potentials of quadratic growth. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 563-587. doi: 10.3934/dcds.2018025

[10]

Dongsheng Kang. Quasilinear systems involving multiple critical exponents and potentials. Communications on Pure & Applied Analysis, 2013, 12 (2) : 695-710. doi: 10.3934/cpaa.2013.12.695

[11]

Hongyun Peng, Zhi-An Wang, Kun Zhao, Changjiang Zhu. Boundary layers and stabilization of the singular Keller-Segel system. Kinetic & Related Models, 2018, 11 (5) : 1085-1123. doi: 10.3934/krm.2018042

[12]

Yihong Du, Zongming Guo, Feng Zhou. Boundary blow-up solutions with interior layers and spikes in a bistable problem. Discrete & Continuous Dynamical Systems, 2007, 19 (2) : 271-298. doi: 10.3934/dcds.2007.19.271

[13]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

[14]

Makram Hamouda, Chang-Yeol Jung, Roger Temam. Boundary layers for the 2D linearized primitive equations. Communications on Pure & Applied Analysis, 2009, 8 (1) : 335-359. doi: 10.3934/cpaa.2009.8.335

[15]

Niclas Bernhoff. Boundary layers and shock profiles for the discrete Boltzmann equation for mixtures. Kinetic & Related Models, 2012, 5 (1) : 1-19. doi: 10.3934/krm.2012.5.1

[16]

Pablo Amster, Colin Rogers. On a Ermakov-Painlevé II reduction in three-ion electrodiffusion. A Dirichlet boundary value problem. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3277-3292. doi: 10.3934/dcds.2015.35.3277

[17]

Pablo Amster, Man Kam Kwong, Colin Rogers. A Neumann Boundary Value Problem in Two-Ion Electro-Diffusion with Unequal Valencies. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2299-2311. doi: 10.3934/dcdsb.2012.17.2299

[18]

Pavlos Xanthopoulos, Georgios E. Zouraris. A linearly implicit finite difference method for a Klein-Gordon-Schrödinger system modeling electron-ion plasma waves. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 239-263. doi: 10.3934/dcdsb.2008.10.239

[19]

Guofa Li, Yisheng Huang. Positive solutions for critical quasilinear Schrödinger equations with potentials vanishing at infinity. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021214

[20]

K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure & Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51

2020 Impact Factor: 1.327

Article outline

Figures and Tables

[Back to Top]