In this paper, we consider a class of cubic systems with polynomial perturbation of the degree at most $ n $, and estimate the upper bound of the number of isolated zeros of its Abelian integral. Furthermore, we obtain the distributions of limit cycles bifurcated from a $ Z_4 $-equivariant system with $ 5 $ centers.
Citation: |
Figure 2. Phase portraits of system (1.8) for $ c<0 $. $ D_{1}^{-} = \{a>0,b\geq 2c\}, D_{2}^{-} = \{a<0,b^2>4ac\}, D_{3}^{-} = \{a<0,b^2<4ac,b>2c,b>2a\}, D_{4}^{-} = \{a<0,b\leq 2c,b\geq 2a\}, D_{5}^{-} = \{a<0,b\geq 2c,b\leq2a\},D_{6}^{-} = \{a<0,b<2c,b<2a\}, D_{7}^{-} = \{a>0,b<2c\}, l_{1}^{-} = \{b = 2a, a<0\}, l_{2}^{-} = \{b^2 = 4ac,a<0\} $
[1] | H. Chen, S. Duan, Y. Tang and J. Xie, Global dynamics of a mechanical system with dry friction, J. Differential Equations, 265 (2018), 5490-5519. doi: 10.1016/j.jde.2018.06.013. |
[2] | H. Chen and J. XIE, The number of limit cycles of the FitzHugh nerve system, Quart. Appl. Math., 73 (2015), 365-378. doi: 10.1090/S0033-569X-2015-01384-7. |
[3] | H. Chen and L. Zou, Global study of Rayleigh-Duffing oscillators, J. Phys. A, 49 (2016), 165202, 35 pp. doi: 10.1088/1751-8113/49/16/165202. |
[4] | Y. Chen and C. Song, Stability and Hopf bifurcation analysis in a prey-predator system with stage-structure for prey and time delay, Chaos, Solitons Fractals, 38 (2008), 1104-1114. doi: 10.1016/j.chaos.2007.01.035. |
[5] | Y. Chen, J. Yu and C. Sun, Stability and Hopf bifurcation analysis in a three-level food chain system with delay, Chaos Solitons Fractals, 31 (2007), 683-694. doi: 10.1016/j.chaos.2005.10.020. |
[6] | C. Christopher and C. Li, Limit cycles of differential equations, CRM Barcelona. Birkhäuser Verlag, Basel, 2007. |
[7] | C. B. Collins, Static stars: Some mathematical curiosities, Journal of Mathematical Physics, 18 (1977), 1374-1377. doi: 10.1063/1.523431. |
[8] | L. Gavrilov and I. D. Iliev, Quadratic perturbations of quadratic codimension-four centers, J. Math. Anal. Appl., 357 (2009), 69-76. doi: 10.1016/j.jmaa.2009.04.004. |
[9] | J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2. |
[10] | M. Han, Bifurcation Theory of Limit Cycles, Science Press Beijing, Beijing; Oxford, 2017. |
[11] | X. Jiang, Z. She, Z. Feng and X. Zheng, Bifurcation Analysis of a Predator-Prey System with Ratio-Dependent Functional Response, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1750222, 21 pp. doi: 10.1142/S0218127417502224. |
[12] | C. Li, C. Liu and J. Yang, A cubic system with thirteen limit cycles, J. Differential Equations, 246 (2009), 3609-3619. doi: 10.1016/j.jde.2009.01.038. |
[13] | J. Li and Q. Huang, Bifurcations of limit cycles forming compound eyes in the cubic system, Chinese Ann. Math. Ser. B, 8 (1987), 391-403. |
[14] | J. Li and Y. Liu, New results on the study of Zq-equivariant planar polynomial vector fields, Qual. Theory Dyn. Syst., 9 (2010), 167-219. doi: 10.1007/s12346-010-0024-7. |
[15] | T. Puu, Attractors, Bifurcations & Chaos Nonlinear Phenomena in Economics, , Springer-Verlag, Berlin, 2000. doi: 10.1007/978-3-662-04094-2. |
[16] | S. Wang, X. Wang and X. Wu, Bifurcation analysis for a food chain model with nonmonotonic nutrition conversion rate of predator to top predator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 30 (2020), 2050113, 19 pp. doi: 10.1142/S0218127420501138. |
[17] | J. Yang, On the number of zeros of Abelian integral for a class of cubic Hamiltonian systems, Dyn. Syst., 34 (2019), 561-583. doi: 10.1080/14689367.2019.1574716. |
[18] | J. Yang, S. Sui and L. Zhao, On the number of zeros of Abelian integral for a class of cubic Hamilton systems with the phase portrait "butterfly", Qual. Theory Dyn. Syst., 18 (2019), 947-967. doi: 10.1007/s12346-019-00321-z. |
[19] | J. Yang and L. Zhao, The cyclicity of period annuli for a class of cubic Hamiltonian systems with nilpotent singular points, J. Differential Equations, 263 (2017), 5554-5581. doi: 10.1016/j.jde.2017.06.027. |
[20] | J. Yang, M. Han, J. Li and P. Yu, Existence conditions of thirteen limit cycles in a cubic system, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2569-2577. doi: 10.1142/S0218127410027209. |
[21] | P. Yu and M. Han, Twelve limit cycles in a cubic case of the 16th Hilbert problem, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 2191-2205. doi: 10.1142/S0218127405013289. |
[22] | Y. Zhao and Z. Zhang, Linear estimate of the number of zeros of abelian integrals for a kind of quartic Hamiltonians, J. Differential Equations, 155 (1999), 73-88. doi: 10.1006/jdeq.1998.3581. |
[23] | X. Zhou and C. Li, Estimate of the number of zeros of Abelian integrals for a kind of quartic Hamiltonians with two centers, Appl. Math. Comput., 204 (2008), 202-209. doi: 10.1016/j.amc.2008.06.036. |
[24] | X. Zhou and C. Li, On the algebraic structure of Abelian integrals for a kind of perturbed cubic Hamiltonian systems, J. Math. Anal. Appl., 359 (2009), 209-215. doi: 10.1016/j.jmaa.2009.05.034. |
Phase portraits of system (1.8) for
Phase portraits of system (1.8) for
The distribution of 5 limit cycles of system (1.10)
Phase portrait of unperturbed system of (1.10)
The distribution of limit cycles when