\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The study on cyclicity of a class of cubic systems

  • * Corresponding author: Jiang Yu

    * Corresponding author: Jiang Yu

The corresponding author is supported by the National Natural Science Foundations of China (11771282 and 11931016), Science and Technology Innovation Action Program of STCSM(20JC1413200), Innovation Program of Shanghai Municipal Education Commission (No. 2021-01-07-00-02-E00087). The first author is supported by the National Natural Science Foundations of China(11771282 and 12071285)

Abstract / Introduction Full Text(HTML) Figure(6) Related Papers Cited by
  • In this paper, we consider a class of cubic systems with polynomial perturbation of the degree at most $ n $, and estimate the upper bound of the number of isolated zeros of its Abelian integral. Furthermore, we obtain the distributions of limit cycles bifurcated from a $ Z_4 $-equivariant system with $ 5 $ centers.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Phase portraits of system (1.8) for $ c>0 $. $ D_{1}^{+} = \{a>0, b^2 < 4ac\}, D_{2}^{+} = \{a<0, b>2a\}, D_{3}^{+} = \{a<0, b<2a\}, D_{4}^{+} = \{a<0, b^2>4ac\}, l_{1}^{+} = \{b = 2a, a<0\}, l_{2}^{+} = \{b^2 = 4ac, a>0\} $

    Figure 2.  Phase portraits of system (1.8) for $ c<0 $. $ D_{1}^{-} = \{a>0,b\geq 2c\}, D_{2}^{-} = \{a<0,b^2>4ac\}, D_{3}^{-} = \{a<0,b^2<4ac,b>2c,b>2a\}, D_{4}^{-} = \{a<0,b\leq 2c,b\geq 2a\}, D_{5}^{-} = \{a<0,b\geq 2c,b\leq2a\},D_{6}^{-} = \{a<0,b<2c,b<2a\}, D_{7}^{-} = \{a>0,b<2c\}, l_{1}^{-} = \{b = 2a, a<0\}, l_{2}^{-} = \{b^2 = 4ac,a<0\} $

    Figure 3.  The distribution of 5 limit cycles of system (1.10)

    Figure 4.  $ D_{3(2)}^{-} $

    Figure 5.  Phase portrait of unperturbed system of (1.10)

    Figure 6.  The distribution of limit cycles when $ r(h) = \alpha $

  • [1] H. ChenS. DuanY. Tang and J. Xie, Global dynamics of a mechanical system with dry friction, J. Differential Equations, 265 (2018), 5490-5519.  doi: 10.1016/j.jde.2018.06.013.
    [2] H. Chen and J. XIE, The number of limit cycles of the FitzHugh nerve system, Quart. Appl. Math., 73 (2015), 365-378.  doi: 10.1090/S0033-569X-2015-01384-7.
    [3] H. Chen and L. Zou, Global study of Rayleigh-Duffing oscillators, J. Phys. A, 49 (2016), 165202, 35 pp. doi: 10.1088/1751-8113/49/16/165202.
    [4] Y. Chen and C. Song, Stability and Hopf bifurcation analysis in a prey-predator system with stage-structure for prey and time delay, Chaos, Solitons Fractals, 38 (2008), 1104-1114.  doi: 10.1016/j.chaos.2007.01.035.
    [5] Y. ChenJ. Yu and C. Sun, Stability and Hopf bifurcation analysis in a three-level food chain system with delay, Chaos Solitons Fractals, 31 (2007), 683-694.  doi: 10.1016/j.chaos.2005.10.020.
    [6] C. Christopher and C. Li, Limit cycles of differential equations, CRM Barcelona. Birkhäuser Verlag, Basel, 2007.
    [7] C. B. Collins, Static stars: Some mathematical curiosities, Journal of Mathematical Physics, 18 (1977), 1374-1377.  doi: 10.1063/1.523431.
    [8] L. Gavrilov and I. D. Iliev, Quadratic perturbations of quadratic codimension-four centers, J. Math. Anal. Appl., 357 (2009), 69-76.  doi: 10.1016/j.jmaa.2009.04.004.
    [9] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.
    [10] M. Han, Bifurcation Theory of Limit Cycles, Science Press Beijing, Beijing; Oxford, 2017.
    [11] X. Jiang, Z. She, Z. Feng and X. Zheng, Bifurcation Analysis of a Predator-Prey System with Ratio-Dependent Functional Response, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1750222, 21 pp. doi: 10.1142/S0218127417502224.
    [12] C. LiC. Liu and J. Yang, A cubic system with thirteen limit cycles, J. Differential Equations, 246 (2009), 3609-3619.  doi: 10.1016/j.jde.2009.01.038.
    [13] J. Li and Q. Huang, Bifurcations of limit cycles forming compound eyes in the cubic system, Chinese Ann. Math. Ser. B, 8 (1987), 391-403. 
    [14] J. Li and Y. Liu, New results on the study of Zq-equivariant planar polynomial vector fields, Qual. Theory Dyn. Syst., 9 (2010), 167-219.  doi: 10.1007/s12346-010-0024-7.
    [15] T. Puu, Attractors, Bifurcations & Chaos Nonlinear Phenomena in Economics, , Springer-Verlag, Berlin, 2000. doi: 10.1007/978-3-662-04094-2.
    [16] S. Wang, X. Wang and X. Wu, Bifurcation analysis for a food chain model with nonmonotonic nutrition conversion rate of predator to top predator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 30 (2020), 2050113, 19 pp. doi: 10.1142/S0218127420501138.
    [17] J. Yang, On the number of zeros of Abelian integral for a class of cubic Hamiltonian systems, Dyn. Syst., 34 (2019), 561-583.  doi: 10.1080/14689367.2019.1574716.
    [18] J. YangS. Sui and L. Zhao, On the number of zeros of Abelian integral for a class of cubic Hamilton systems with the phase portrait "butterfly", Qual. Theory Dyn. Syst., 18 (2019), 947-967.  doi: 10.1007/s12346-019-00321-z.
    [19] J. Yang and L. Zhao, The cyclicity of period annuli for a class of cubic Hamiltonian systems with nilpotent singular points, J. Differential Equations, 263 (2017), 5554-5581.  doi: 10.1016/j.jde.2017.06.027.
    [20] J. YangM. HanJ. Li and P. Yu, Existence conditions of thirteen limit cycles in a cubic system, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2569-2577.  doi: 10.1142/S0218127410027209.
    [21] P. Yu and M. Han, Twelve limit cycles in a cubic case of the 16th Hilbert problem, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 2191-2205.  doi: 10.1142/S0218127405013289.
    [22] Y. Zhao and Z. Zhang, Linear estimate of the number of zeros of abelian integrals for a kind of quartic Hamiltonians, J. Differential Equations, 155 (1999), 73-88.  doi: 10.1006/jdeq.1998.3581.
    [23] X. Zhou and C. Li, Estimate of the number of zeros of Abelian integrals for a kind of quartic Hamiltonians with two centers, Appl. Math. Comput., 204 (2008), 202-209.  doi: 10.1016/j.amc.2008.06.036.
    [24] X. Zhou and C. Li, On the algebraic structure of Abelian integrals for a kind of perturbed cubic Hamiltonian systems, J. Math. Anal. Appl., 359 (2009), 209-215.  doi: 10.1016/j.jmaa.2009.05.034.
  • 加载中

Figures(6)

SHARE

Article Metrics

HTML views(1311) PDF downloads(371) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return