In this paper, we study a cross-infection model with diffusion and incubation period. Firstly, we prove the global attractivity of the infection-free equilibrium and infected equilibrium for the spatially homogeneous system. Secondly, we establish the threshold dynamics for the spatially heterogeneous system in terms of the basic reproduction number $ \mathcal{R}_0 $. It turns out that the infection-free steady state is globally attractive if $ \mathcal{R}_0<1 $; and the system is uniformly persistent if $ \mathcal{R}_0>1 $. Finally, we explore the influence of different diffusion coefficients, spatial heterogeneity of the disease transmission rate and the incubation period on $ \mathcal{R}_0 $. Our numerical results show that $ \mathcal{R}_0 $ are decreasing functions of the diffusion coefficients and the incubation period, respectively, while it is increasing with respect to the spatial heterogeneity.
Citation: |
[1] |
D. J. Austin and R. Anderson, Studies of antibiotic resistance within the patient, hospitals and the community using simple mathematical models, Phil. Trans. R. Soc. Lond. Ser. B, 354 (1999), 721-738.
doi: 10.1098/rstb.1999.0425.![]() ![]() |
[2] |
D. J. Austin, M. J. Bonten, R. A. Weinstein, S. Slaughter and R. M. Anderson, Vancomycin-resistant enterococci in intensive-care hospital settings: Transmission dynamics, persistence, and the impact of infection control programs, Proc. Natl. Acad. Sci. U.S.A., 96 (1999), 6908-6913.
doi: 10.1073/pnas.96.12.6908.![]() ![]() |
[3] |
Z. Bai, R. Peng and X.-Q. Zhao, A reaction–diffusion malaria model with seasonality and incubation period, J. Math. Biol., 77 (2018), 201-228.
doi: 10.1007/s00285-017-1193-7.![]() ![]() ![]() |
[4] |
J. M. Boyce, Environmental contamination makes an important contribution to hospital infection, J. Hosp. Infect., 65 (2007), 50-54.
doi: 10.1016/S0195-6701(07)60015-2.![]() ![]() |
[5] |
J. M. Boyce, G. Potter-Bynoe, C. Chenevert and T. King, Environmental contamination due to methicillin-resistant staphylococcus aureus possible infection control implications, Infect. Control Hosp. Epidemiol., 18 (1997), 622-627.
![]() |
[6] |
CDC, Center for Disease Control and Prevention, Accessed 2015, https://www.cdc.gov/hai/data/portal/index.html.
![]() |
[7] |
CDC, Center for Disease Control and Prevention, Accessed March, 2014, https://www.cdc.gov/hai/dpks/hospital-infections/dpk-hai.html.
![]() |
[8] |
S. J. Dancer, Importance of the environment in meticillin-resistant staphylococcus aureus acquisition: The case for hospital cleaning, Lancet Infect. Dis., 8 (2008), 101-113.
doi: 10.1016/S1473-3099(07)70241-4.![]() ![]() |
[9] |
S. J. Dancer, The role of environmental cleaning in the control of hospital-acquired infection, J. Hosp. Infect., 73 (2009), 378-385.
doi: 10.1016/j.jhin.2009.03.030.![]() ![]() |
[10] |
H. Grundmann, S. Hori, B. Winter, A. Tami and D. J. Austin, Risk factors for the transmission of methicillin-resistant staphylococcus aureus in an adult intensive care unit: Fitting a model to the data, J. Infect. Dis., 185 (2002), 481-488.
![]() |
[11] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, 1988.
doi: 10.1090/surv/025.![]() ![]() ![]() |
[12] |
J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag New York, 1993.
doi: 10.1007/978-1-4612-4342-7.![]() ![]() ![]() |
[13] |
Q. Huang, M. A. Horn and S. Ruan, Modeling the effect of antibiotic exposure on the transmission of methicillin-resistant staphylococcus aureus in hospitals with environmental contamination, Math. Biosci. Eng., 16 (2019), 3641-3673.
doi: 10.3934/mbe.2019181.![]() ![]() ![]() |
[14] |
Q. Huang, X. Huo, D. Miller and S. Ruan, Modeling the seasonality of methicillin-resistant Staphylococcus aureus infections in hospitals with environmental contamination, J. Biol. Dynam., 13 (2019), 99-122.
doi: 10.1080/17513758.2018.1510049.![]() ![]() ![]() |
[15] |
F. Li and X.-Q. Zhao, Global dynamics of a nonlocal periodic reaction-diffusion model of bluetongue disease, J. Differential Equations, 272 (2021), 127-163.
doi: 10.1016/j.jde.2020.09.019.![]() ![]() ![]() |
[16] |
X. Liang, L. Zhang and X.-Q. Zhao, Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease), J. Dynam. Differential Equations, 31 (2019), 1247-1278.
doi: 10.1007/s10884-017-9601-7.![]() ![]() ![]() |
[17] |
Y. Lou and X.-Q. Zhao, A reaction–diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543-568.
doi: 10.1007/s00285-010-0346-8.![]() ![]() ![]() |
[18] |
P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.
doi: 10.1137/S0036141003439173.![]() ![]() ![]() |
[19] |
R. Martin and H. Smith, Abstract functional-differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.
doi: 10.2307/2001590.![]() ![]() ![]() |
[20] |
K. Mischaikow, H. Smith and H. R. Thieme, Asymptotically autonomous semiflows: Chain recurrence and lyapunov functions, Trans. Amer. Math. Soc., 347 (1995), 1669-1685.
doi: 10.1090/S0002-9947-1995-1290727-7.![]() ![]() ![]() |
[21] |
D. Pang, Y. Xiao and X.-Q. Zhao, A cross-infection model with diffusive environmental bacteria, J. Math. Anal. Appl., 505 (2022), 125637, 18 pp.
doi: 10.1016/j.jmaa.2021.125637.![]() ![]() ![]() |
[22] |
R. Peng and X.-Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471.
doi: 10.1088/0951-7715/25/5/1451.![]() ![]() ![]() |
[23] |
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, 1984.
doi: 10.1007/978-1-4612-5282-5.![]() ![]() ![]() |
[24] |
J. Raboud, R. Saskin, A. Simor, M. Loeb, K. Green, D. E. Low and A. McGeer, Modeling transmission of methicillin-resistant staphylococcus aureus among patients admitted to a hospital, Infect. Control Hosp. Epidemiol., 26 (2005), 607-615.
![]() |
[25] |
A. Rampling, S. Wiseman, L. Davis, A. Hyett, A. Walbridge, G. Payne and A. Cornaby, Evidence that hospital hygiene is important in the control of methicillin-resistant staphylococcus aureus, J. Hosp. Infect., 49 (2001), 109-116.
doi: 10.1053/jhin.2001.1013.![]() ![]() |
[26] |
V. Sebille, S. Chevret and A.-J. Valleron, Modeling the spread of resistant nosocomial pathogens in an intensive-care unit, Infect. Control Hosp. Epidemiol., 18 (1997), 84-92.
![]() |
[27] |
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society, 1995.
![]() ![]() |
[28] |
H. Smith and X. Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169-6179.
doi: 10.1016/S0362-546X(01)00678-2.![]() ![]() ![]() |
[29] |
H. R. Thieme, Convergence results and a poincare-bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.
doi: 10.1007/BF00173267.![]() ![]() ![]() |
[30] |
H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.
doi: 10.1137/080732870.![]() ![]() ![]() |
[31] |
H. R. Thieme and X.-Q. Zhao, A non-local delayed and diffusive predator-prey model, Nonlinear Anal. RWA, 2 (2001), 145-160.
doi: 10.1016/S0362-546X(00)00112-7.![]() ![]() ![]() |
[32] |
L. Wang and S. Ruan, Modeling nosocomial infections of methicillin-resistant staphylococcus aureus with environment contamination, Scientific Reports, 7 (2017), 1-12.
doi: 10.1038/s41598-017-00261-1.![]() ![]() |
[33] |
W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168.
doi: 10.1137/090775890.![]() ![]() ![]() |
[34] |
W. Wang and X.-Q. Zhao, Spatial invasion threshold of Lyme disease, SIAM J. Appl. Math., 75 (2015), 1142-1170.
doi: 10.1137/140981769.![]() ![]() ![]() |
[35] |
X. Wang, Y. Chen, W. Zhao, Y. Wang, Q. Song, H. Liu, J. Zhao, X. Han, X. Hu and H. Grundmann et al., A data-driven mathematical model of multi-drug resistant acinetobacter baumannii transmission in an intensive care unit, Scientific Reports, 5 (2015), 1-8.
doi: 10.1038/srep09478.![]() ![]() |
[36] |
X. Wang, Y. Xiao, J. Wang and X. Lu, A mathematical model of effects of environmental contamination and presence of volunteers on hospital infections in China, J. Theor. Biol., 293 (2012), 161-173.
doi: 10.1016/j.jtbi.2011.10.009.![]() ![]() ![]() |
[37] |
X. Wang, Y. Xiao, J. Wang and X. Lu, Stochastic disease dynamics of a hospital infection model, Math. Biosci., 241 (2013), 115-124.
doi: 10.1016/j.mbs.2012.10.002.![]() ![]() ![]() |
[38] |
D. J. Weber and W. A. Rutala, Role of environmental contamination in the transmission of vancomycin-resistant enterococci, Infect. Control Hosp. Epidemiol., 18 (1997), 306-309.
![]() |
[39] |
J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag New York, 1996.
doi: 10.1007/978-1-4612-4050-1.![]() ![]() ![]() |
[40] |
R. Wu and X.-Q. Zhao, A reaction–diffusion model of vector-borne disease with periodic delays, J. Nonlinear Sci., 29 (2019), 29-64.
doi: 10.1007/s00332-018-9475-9.![]() ![]() ![]() |
[41] |
Z. Xu and X.-Q. Zhao, A vector-bias malaria model with incubation period and diffusion, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2615-2634.
doi: 10.3934/dcdsb.2012.17.2615.![]() ![]() ![]() |
[42] |
X.-Q. Zhao, Basic reproduction ratios for periodic compartmental models with time delay, J. Dynam. Differential Equations, 29 (2017), 67-82.
doi: 10.1007/s10884-015-9425-2.![]() ![]() ![]() |
[43] |
X.-Q. Zhao, Dynamical Systems in Population Biology, 2$^{nd}$ edtion, Springer, Cham, 2017.
doi: 10.1007/978-3-319-56433-3.![]() ![]() ![]() |
[44] |
X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations, Canadian Appl. Math. Quarterly, 4 (1996), 421-444.
![]() ![]() |
Schematic diagram for transmission of HCWs, patients and environmental bacteria in hospital
Persistence of contaminated health-care workers, the infectious patients and the environmental bacteria when
Elimination of the contaminated health-care workers, the infectious patients and the environmental bacteria when
The effects of spatial heterogeneity and incubation period on