\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence of ground states for Schrödinger-Poisson system with nonperiodic potentials

  • *Corresponding author: Jun Wang

    *Corresponding author: Jun Wang

This work was supported by NNSF of China(Grants 11971202), Outstanding Young foundation of Jiangsu Province No. BK20200042 and the Six big talent peaks project in Jiangsu Province(XYDXX-015)

Abstract Full Text(HTML) Related Papers Cited by
  • In the present paper we study a class of Schrödinger-Poisson equations

    $\begin{equation} \begin{cases} -\Delta u+V(x)u+\phi u = a (x)|u|^{p-1}u,\ x\in\mathbb{R}^3\\ -\Delta \phi = u^{2},\ x\in\mathbb{R}^3, \end{cases} \end{equation}\quad\quad\quad (1)$

    where $ V(x) $ and $ a(x) $ are of different forms on the half space, i.e. $ V(x) = V_{1}(x), a(x) = a_{1}(x) $ for $ x_{1}>0 $ and $ V(x) = V_{2}(x), a(x) = a_{2}(x) $ for $ x_{1}<0 $, where $ V_{1},V_{2},a_{1} $ and $ a_{2} $ are periodic in each coordinate direction. By using a concentration compactness discussion, we establish the existence of surface gap soliton ground state of (1) for $ p\in [3,5) $. We also give a Mountain-Pass type ground state of (1) for $ p\in (3,5) $.

    Mathematics Subject Classification: Primary: 35J61, 35J20, 35Q55; Secondary: 49J40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] W. AmreinA. Berthier and V. Georgescu, $L^{p}$-inequalities for the Laplacian and unique continuation, Ann. Inst. Fourier (Grenoble), 31 (1981), 153-168.  doi: 10.5802/aif.843.
    [2] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293.  doi: 10.12775/TMNA.1998.019.
    [3] G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 248 (2010), 521-543.  doi: 10.1016/j.jde.2009.06.017.
    [4] Y. Ding and J. Wei, Semiclassical states for nonlinear Schrödinger equations with sign-changing potentials, J. Funct. Anal., 251 (2007), 546-572.  doi: 10.1016/j.jfa.2007.07.005.
    [5] T. DohnalM. Plum and W. Reichel, Surface gap soliton ground states for the nonlinear Schrödinger equation, Comm. Math. Phys., 308 (2011), 511-542.  doi: 10.1007/s00220-011-1320-z.
    [6] M. Du, L. Tian, J. Wang and F. Zhang, Existence and asymptotic behavior of solutions for nonlinear Schrödinger-Poisson systems with steep potential well, J. Math. Phys., 57 (2016), 031502, 19 pp. doi: 10.1063/1.4941036.
    [7] V. Giusi, Ground states for Schrödinger-Poisson type systems, Ric. Mat., 60 (2011), 263-297.  doi: 10.1007/s11587-011-0109-x.
    [8] X. He, Multiplicity and concentration of positive solutions for the Schrödinger-Poisson equations, Z. Angew. Math. Phys., 62 (2011), 869-889.  doi: 10.1007/s00033-011-0120-9.
    [9] X. He and W. Zou, Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth, J. Math. Phys., 53 (2012), 023702, 19 pp. doi: 10.1063/1.3683156.
    [10] I. Ianni and D. Ruiz, Ground and bound states for a static Schrödinger-Poisson-Slater problem, Commun. Contemp. Math., 14 (2012), 1250003, 22 pp. doi: 10.1142/S0219199712500034.
    [11] Y. Jiang and H. Zhou, Schrödinger-Poisson system with steep potential well, J. Differential Equations, 251 (2011), 582-608.  doi: 10.1016/j.jde.2011.05.006.
    [12] G. Li, S. Peng and C. Wang, Multi-bump solutions for the nonlinear Schrödinger-Poisson system, J. Math. Phys., 52 (2011), 053505, 19 pp. doi: 10.1063/1.3585657.
    [13] G. LiS. Peng and S. Yan, Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system, Commun. Contemp. Math., 12 (2010), 1069-1092.  doi: 10.1142/S0219199710004068.
    [14] E.-H. Lieb and M. Loss, Analysis, 2$^{nd}$ edition, American Mathematical Society, Providence, RI, 2001. doi: 10.1090/gsm/014.
    [15] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145.  doi: 10.1016/S0294-1449(16)30428-0.
    [16] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.  doi: 10.1016/S0294-1449(16)30422-X.
    [17] Z. LiuJ. Su and Z. Wang, Solutions of elliptic problems with nonlinearities of linear growth, Calc. Var. Partial Differential Equations, 35 (2009), 463-480.  doi: 10.1007/s00526-008-0215-0.
    [18] Z. LiuZ. Wang and J. Zhang, Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system, Ann. Mat. Pura Appl., 195 (2016), 775-794.  doi: 10.1007/s10231-015-0489-8.
    [19] F.-Y. QinJ. Wang and J. Yang, Infinitely many positive solutions for Schrödinger-Poisson systems with nonsymmetry potentials, Discrete Contin. Dyn. Syst., 41 (2021), 4705-4736.  doi: 10.3934/dcds.2021054.
    [20] D. Ruiz, On the Schrödinger-Poisson-Slater system: Behavior of minimizers, radial and nonradial cases, Arch. Ration. Mech. Anal., 198 (2010), 349-368.  doi: 10.1007/s00205-010-0299-5.
    [21] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.  doi: 10.1016/j.jfa.2006.04.005.
    [22] O. Sánchez and J. Soler, Long-time dynamics of the Schrödinger-Poisson-Slater system, J. Statist. Phys., 114 (2004), 179-204.  doi: 10.1023/B:JOSS.0000003109.97208.53.
    [23] M. Schechter and B. Simon, Unique continuation for Schrödinger operators with unbounded potentials, J. Math. Anal. Appl., 77 (1980), 482-492.  doi: 10.1016/0022-247X(80)90242-5.
    [24] M. Struwe, Variational Methods, 4$^{nd}$ edition, Springer-Verlag, Berlin, 2008. doi: 978-3-540-74012-4.
    [25] J. SunH. Chen and Juan J. Nieto, On ground state solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 252 (2012), 3365-3380.  doi: 10.1016/j.jde.2011.12.007.
    [26] J. Sun and S. Ma, Ground state solutions for some Schrödinger-Poisson systems with periodic potentials, J. Differential Equations, 260 (2016), 2119-2149.  doi: 10.1016/j.jde.2015.09.057.
    [27] J. WangQ. HeL. Xiao and F. Zhang, Positive solutions for Schrödinger system with asymptotically periodic potentials, Nonlinear Anal., 134 (2016), 215-235.  doi: 10.1016/j.na.2016.01.011.
    [28] J. WangL. TianJ. Xu and F. Zhang, Existence of multiple positive solutions for Schrödinger-Poisson systems with critical growth, Z. Angew. Math. Phys., 66 (2015), 2441-2471.  doi: 10.1007/s00033-015-0531-0.
    [29] J. WangL. TianJ. Xu and F. Zhang, Existence and concentration of positive solutions for semilinear Schrödinger-Poisson systems in ${\mathbb{R}}^3$, Calc. Var. Partial Differential Equations, 48 (2013), 243-273.  doi: 10.1007/s00526-012-0548-6.
    [30] J. WangJ. XuF. Zhang and X. Chen, Existence of multi-bump solutions for a semilinear Schrödinger-Poisson system, Nonlinearity, 26 (2013), 1377-1399.  doi: 10.1088/0951-7715/26/5/1377.
    [31] Z. Wang and H. Zhou, Sign-changing solutions for the nonlinear Schrödinger-Poisson system in ${\mathbb{R}}^3$, Calc. Var. Partial Differential Equations, 52 (2015), 927-943.  doi: 10.1007/s00526-014-0738-5.
    [32] Z. Wang and H. Zhou, Positive solutions for nonlinear Schrödinger equations with deepening potential well, J. Eur. Math. Soc., 11 (2009), 545-573.  doi: 10.4171/JEMS/160.
    [33] M. Willem, Minimax Theorems, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.
    [34] L. ZhaoH. Liu and F. Zhao, Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential, J. Differential Equations, 255 (2013), 1-23.  doi: 10.1016/j.jde.2013.03.005.
  • 加载中
SHARE

Article Metrics

HTML views(1654) PDF downloads(365) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return