In this paper, we consider the quasineutral limit of compressible Euler-Poisson equations based on the concept of dissipative measure-valued solutions. In the case of well-prepared initial data under periodic boundary condictions, we prove that dissipative measure-valued solutions of the compressible Euler-Poisson equations converge to the smooth solution of the incompressible Euler system when the Debye length tends to zero.
Citation: |
[1] |
Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 25 (2000), 737-754.
doi: 10.1080/03605300008821529.![]() ![]() ![]() |
[2] |
Y. Breinier, C. De Lellis and L. Székelyhidi Jr, Weak-strong uniqueness for measure-valued solutions, Comm. Math. Phys., 305 (2011), 351-361.
doi: 10.1007/s00220-011-1267-0.![]() ![]() ![]() |
[3] |
J. Březina and E. Feireisl, Measure-valued solutions to the complete Euler system revisited, Z. Angew. Math. Phys., 69 (2018), Paper No. 57, 17 pp.
doi: 10.1007/s00033-018-0951-8.![]() ![]() ![]() |
[4] |
N. Chaudhuri, On weak (measure-value)-strong uniqueness for compressible Navier-Stokes system with non-monotone pressure law, J. Math. Fluid Mech., 22 (2020), Paper No. 17, 13 pp.
doi: 10.1007/s00021-019-0465-y.![]() ![]() ![]() |
[5] |
S. Demoulini, D. M. A. Stuart and A. E. Tzavaras, Weak-strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics, Arch. Ration. Mech. Anal., 205 (2012), 927-961.
doi: 10.1007/s00205-012-0523-6.![]() ![]() ![]() |
[6] |
R. J. DiPerna, Measure-valued solutions to conservation laws, Arch. Ration. Mech. Anal., 88 (1985), 223-270.
doi: 10.1007/BF00752112.![]() ![]() ![]() |
[7] |
E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda and E. Wiedemann, Dissipative measure-valued solutions to the compressible Navier-Stokes system, Calc. Var. Partial Differential Equations, 55 (2016), Art. 141, 20 pp.
doi: 10.1007/s00526-016-1089-1.![]() ![]() ![]() |
[8] |
E. Feireisl, C. Klingenberg and S. Markfelder, On the low Mach number limit for the compressible Euler system, SIAM J. Math. Anal., 51 (2019), 1496-1513.
doi: 10.1137/17M1131799.![]() ![]() ![]() |
[9] |
P. Gwiazda, A. Świerczewska-Gwiazda and E. Wiedemann, Weak-strong uniqueness for measure-valued solutions of some compressible fluid models, Nonlinearity, 28 (2015), 3873-3890.
doi: 10.1088/0951-7715/28/11/3873.![]() ![]() ![]() |
[10] |
S. Jiang, Q.-C. Ju, H.-L. Li and Y. Li, Quasi-neutral limit of the full bipolar Euler-Poisson system, Sci. China Math., 53 (2010), 3099-3114.
doi: 10.1007/s11425-010-4114-4.![]() ![]() ![]() |
[11] |
Q.-C. Ju, H.-L. Li, Y. Li and S. Jiang, Quasi-neutral limit of the two-fluid Euler-Poisson system, Commun. Pure Appl. Anal., 9 (2010), 1577-1590.
doi: 10.3934/cpaa.2010.9.1577.![]() ![]() ![]() |
[12] |
T. Kato, Nonstationary flows of viscous and ideal fluids in $ \mathbb{R}^3$, J. Funct. Anal., 9 (1972), 296-305.
doi: 10.1016/0022-1236(72)90003-1.![]() ![]() ![]() |
[13] |
T. Kato and C.-Y. Lai, Nonlinear evolution equations and the Euler flow, J. Funct. Anal., 56 (1984), 15-28.
doi: 10.1016/0022-1236(84)90024-7.![]() ![]() ![]() |
[14] |
D. Kröner and W. Zajaczkowski, Measure-valued solutions of the Euler equations for ideal compressible polytropic fluids, Math. Methods Appl. Sci., 19 (1996), 235-252.
doi: 10.1002/(SICI)1099-1476(199602)19:3<235::AID-MMA772>3.0.CO;2-4.![]() ![]() ![]() |
[15] |
J. Málek, J. Nečas, M. Rokyta and M. Růžička, Weak and Measure-Valued Solutions to Evolutionary PDE's, Chapman and Hall, London, 1996.
![]() ![]() |
[16] |
Š. Nečasová and T. Tang, On a singular limit for the compressible rotating Euler system, J. Math. Fluid Mech., 22 (2020), Paper No. 43, 14 pp.
doi: 10.1007/s00021-020-00504-8.![]() ![]() ![]() |
[17] |
J. Neustupa, Measure-valued solutions of the Euler and Navier-Stokes equations for compressible barotropic fluids, Math. Nachr., 163 (1993), 217-227.
doi: 10.1002/mana.19931630119.![]() ![]() ![]() |
[18] |
P. Pedregal, Parametrized Measures and Variational Principles, Birkhäuser, 1997.
doi: 10.1007/978-3-0348-8886-8.![]() ![]() ![]() |
[19] |
X.-K. Pu, Quasineutral limit of the pressureless Euler-Poisson equation, Appl. Math. Lett., 30 (2014), 33-37.
doi: 10.1016/j.aml.2013.12.008.![]() ![]() ![]() |
[20] |
S. Wang, Quasineutral limit of Euler-Poisson system with and without viscosity, Comm. PDE, 29 (2004), 419-456.
doi: 10.1081/PDE-120030403.![]() ![]() ![]() |
[21] |
S. Wang, J.-W Yang and D. Luo, Convergence of compressible Euler-Poisson system to incompressible Euler equations, Appl. Math. Comput., 216 (2010), 3408-3418.
doi: 10.1016/j.amc.2010.04.035.![]() ![]() ![]() |