[1]
|
S. S. Antman, The equations for large vibrations of strings, Amer. Math. Monthly, 87 (1980), 359-370.
doi: 10.1080/00029890.1980.11995034.
|
[2]
|
D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223.
doi: 10.1007/s00220-003-0859-8.
|
[3]
|
D. Bresch, B. Desjardins and C. K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Partial Differential Equations, 28 (2003), 843-868.
doi: 10.1081/PDE-120020499.
|
[4]
|
X. Cai and Q. Jiu, Weak and strong solutions for the incompressible Navier–Stokes equations with damping, J. Math. Anal. Appl., 343 (2008), 799-809.
doi: 10.1016/j.jmaa.2008.01.041.
|
[5]
|
G. Du and L. Zuo, A parallel partition of unity scheme based on two-grid discretizations for the Navier–Stokes problem, J. Sci. Comput., 75 (2018), 1445-1462.
doi: 10.1007/s10915-017-0593-6.
|
[6]
|
Q. Du and M. Gunzburger, Analysis of a Ladyzhenskaya model for incompressible viscous flow, J. Math. Anal. Appl., 155 (1991), 21-45.
doi: 10.1016/0022-247X(91)90024-T.
|
[7]
|
Q. Du and M. Gunzburger, FE approximations of a Ladyzhenskaya model for stationary incompressible viscous flow, SIAM J. Numer. Anal., 27 (1990), 1-19.
doi: 10.1137/0727001.
|
[8]
|
V. Girault and P. A. Raviart, Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Mathematics, Berlin Springer Verlag, 1979.
|
[9]
|
V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag, Berlin, 1986
doi: 10.1007/978-3-642-61623-5.
|
[10]
|
V. Georgiev and G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differential Equations, 109 (1994), 295-308.
doi: 10.1006/jdeq.1994.1051.
|
[11]
|
Y. He, A fully discrete stabilized finite-element method for the time-dependent Navier-Stokes problem, IMA J. Numer. Anal., 23 (2003), 665-691.
doi: 10.1093/imanum/23.4.665.
|
[12]
|
Y. He and J. Li, Convergence of three iterative methods based on the finite element discretization for the stationary Navier–Stokes equations, Comput. Methods Appl. Mech. Engrg., 198 (2009), 1351-1359.
doi: 10.1016/j.cma.2008.12.001.
|
[13]
|
Y. He, L. Mei, Y. Shang and J. Cui, Newton iterative parallel finite element algorithm for the steady Navier-Stokes equations, J. Sci. Comput., 44 (2010), 92-106.
doi: 10.1007/s10915-010-9371-4.
|
[14]
|
Y. He, H. L. Miao and C. F. Ren, A two-level finite element Galerkin method for the nonstationary Navier-Stokes equations II: Time discretization, J. Comput. Math., 22 (2004), 33-54.
|
[15]
|
Y. He, J. Xu and A. Zhou, Local and parallel finite element algorithms for the Navier-Stokes problem, J. Comput. Math., 24 (2006), 227-238.
|
[16]
|
Y. He, J. Xu, A. Zhou and J. Li, Local and parallel finite element algorithms for the Stokes problem, Numer. Math., 109 (2008), 415-434.
doi: 10.1007/s00211-008-0141-2.
|
[17]
|
F. Hecht, New development in freefem++, J. Numer. Math., 20 (2012), 251-265.
doi: 10.1515/jnum-2012-0013.
|
[18]
|
J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal., 19 (1982), 275-311.
doi: 10.1137/0719018.
|
[19]
|
J. G. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem. Part IV: Error analysis for second-order time discretization, SIAM J. Numer. Anal., 27 (1990), 353-384.
doi: 10.1137/0727022.
|
[20]
|
M. Li, D. Shi and Y. Dai, Stabilized low order finite elements for Stokes equations with damping, J. Math. Anal. Appl., 435 (2016), 646-660.
doi: 10.1016/j.jmaa.2015.10.040.
|
[21]
|
M. Li, D. Shi, Z. Li and H. Chen, Two-level mixed finite element methods for the Navier–Stokes equations with damping, J. Math. Anal. Appl., 470 (2019), 292-307.
doi: 10.1016/j.jmaa.2018.10.002.
|
[22]
|
D. Liu and K. Li, Finite element analysis of the Stokes equations with damping, Math. Numer. Sin., 32 (2010), 433-448.
|
[23]
|
Y. Ping, H. Su and X. Feng, Parallel two-step finite element algorithm for the stationary incompressible magnetohydrodynamic equations, International Journal of Numerical Methods for Heat & Fluid Flow, 29 (2019), 2709-2727.
doi: 10.1108/HFF-10-2018-0552.
|
[24]
|
Y. Ping, H. Su, J. Zhao and X. Feng, Parallel two-step finite element algorithm based on fully overlapping domain decomposition for the time-dependent natural convection problem, International Journal of Numerical Methods for Heat & Fluid Flow, 30 (2019), 496-515.
doi: 10.1108/HFF-03-2019-0241.
|
[25]
|
H. Qiu, Y. Zhang and L. Mei, A Mixed-FEM for Navier–Stokes type variational inequality with nonlinear damping term, Comput. Math. Appl., 73 (2017), 2191-2207.
doi: 10.1016/j.camwa.2017.02.046.
|
[26]
|
H. Qiu, Y. Zhang, L. Mei and C. Xue, A penalty-FEM for Navier-Stokes type variational inequality with nonlinear damping term, Numer. Methods Partial Differential Equations, 33 (2017), 918-940.
doi: 10.1002/num.22130.
|
[27]
|
Y. Shang, A parallel stabilized finite element method based on the lowest equal-order elements for incompressible flows, Computing, 102 (2020), 65-81.
doi: 10.1007/s00607-019-00729-0.
|
[28]
|
Y. Shang and Y. He, Parallel iterative finite element algorithms based on full domain partition for the stationary Navier–Stokes equations, Appl. Numer. Math., 60 (2010), 719-737.
doi: 10.1016/j.apnum.2010.03.013.
|
[29]
|
Y. Shang and Y. He, A parallel Oseen-linearized algorithm for the stationary Navier–Stokes equations, Comput. Methods Appl. Mech. Engrg., 209/212 (2012), 172-183.
doi: 10.1016/j.cma.2011.11.003.
|
[30]
|
Y. Shang and S. Huang, A parallel subgrid stabilized finite element method based on two-grid discretization for simulation of 2D/3D steady incompressible flows, J. Sci. Comput., 60 (2014), 564-583.
doi: 10.1007/s10915-013-9806-9.
|
[31]
|
Y. Shang and J. Qin, Parallel finite element variational multiscale algorithms for incompressible flow at high Reynolds numbers, Appl. Numer. Math., 117 (2017), 1-21.
doi: 10.1016/j.apnum.2017.01.018.
|
[32]
|
D. Shi and Z. Yu, Superclose and superconvergence of finite element discretizations for the Stokes equations with damping, Appl. Math. Comput., 219 (2013), 7693-7698.
doi: 10.1016/j.amc.2013.01.057.
|
[33]
|
Q. Tang and Y. Huang, Analysis of local and parallel algorithm for incompressible Magnetohydrodynamics flows by finite element iterative method, Commun. Comput. Phys., 25 (2019), 729-751.
doi: 10.4208/cicp.oa-2017-0153.
|
[34]
|
C. Taylor and P. Hood, A numerical solution of the Navier-Stokes equations using the finite element technique, Computers & Fluids, 1 (1973), 73-100.
doi: 10.1016/0045-7930(73)90027-3.
|
[35]
|
R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, 3$^{rd}$ edition, Studies in Mathematics and its Applications, 2. North-Holland Publishing Co., Amsterdam, 1984.
|
[36]
|
J. Yu, F. Shi and H. Zheng, Local and parallel finite element algorithms based on the partition of unity for the Stokes problem, SIAM J. Sci. Comput., 36 (2014), C547–C567.
doi: 10.1137/130925748.
|
[37]
|
J. Xu and A. Zhou, Local and parallel finite element algorithms based on two-grid discretizations, Math. Comp., 69 (2000), 881-909.
doi: 10.1090/S0025-5718-99-01149-7.
|
[38]
|
J. Xu and A. Zhou, Local and parallel finite element algorithms based on two-grid discretizations for nonlinear problems, Adv. Comput. Math., 14 (2001), 293-327.
doi: 10.1023/A:1012284322811.
|
[39]
|
G. Zhang, H. Su and X. Feng, A novel parallel two-step algorithm based on finite element discretization for the incompressible flow problem, Numerical Heat Transfer, Part B: Fundamentals, 73 (2018), 329-341.
doi: 10.1080/10407790.2018.1486647.
|
[40]
|
Z. Zhang, X. Wu and M. Lu, On the uniqueness of strong solution to the incompressible Navier–Stokes equations with damping, J. Math. Anal. Appl., 377 (2011), 414-419.
doi: 10.1016/j.jmaa.2010.11.019.
|