We consider a Lotka-Volterra food chain model with possibly intra-specific competition in a stochastic environment represented by stochastic differential equations. In the non-degenerate setting, this model has already been studied by A. Hening and D. Nguyen in [
Moreover, we study a more general model, in which we give new conditions which make it possible to characterize the convergence of the semi-group towards the unique invariant probability measure either at an exponential rate or at a polynomial one. This will be used in the stochastic Lotka-Volterra food chain to see that if intra-specific competition occurs for all species, the rate of convergence is exponential while in the other cases it is polynomial.
Citation: |
[1] |
E. Allen, Environmental variability and mean-reverting processes, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2073-2089.
doi: 10.3934/dcdsb.2016037.![]() ![]() ![]() |
[2] |
M. Benaïm, Stochastic persistence, arXiv preprint arXiv: 1806.08450.
![]() |
[3] |
M. Benaïm, D. N. Nguyen and N. Nguyen, Stochastic Kolmogorov systems under regime-switching: Coexistence and extinction, preprint.
![]() |
[4] |
B. Dennis, P. L. Munholland and J. M. Scott, Estimation of growth and extinction parameters for endangered species, Ecological Monographs, 61 (1991), 115-143.
![]() |
[5] |
S. N. Evans, P. L. Ralph, S. J. Schreiber and A. Sen, Stochastic population growth in spatially heterogeneous environments, J. Math. Biol., 66 (2013), 423-476.
doi: 10.1007/s00285-012-0514-0.![]() ![]() ![]() |
[6] |
P. Foley, Predicting extinction times from environmental stochasticity and carrying capacity, Conservation Biology, 8 (1994), 124-137.
doi: 10.1046/j.1523-1739.1994.08010124.x.![]() ![]() |
[7] |
T. C. Gard and T. G. Hallam, Persistence in food webs. I. Lotka-Volterra food chains, Bull. Math. Biol., 41 (1979), 877-891.
![]() ![]() |
[8] |
A. Hening and D. H. Nguyen, Coexistence and extinction for stochastic Kolmogorov systems, Ann. Appl. Probab., 28 (2018), 1893-1942.
doi: 10.1214/17-AAP1347.![]() ![]() ![]() |
[9] |
A. Hening and D. H. Nguyen, Persistence in stochastic Lotka-Volterra food chains with intraspecific competition, Bull. Math. Biol., 80 (2018), 2527-2560.
doi: 10.1007/s11538-018-0468-5.![]() ![]() ![]() |
[10] |
A. Hening and D. H. Nguyen, Stochastic Lotka-Volterra food chains, J. Math. Biol., 77 (2018), 135-163.
doi: 10.1007/s00285-017-1192-8.![]() ![]() ![]() |
[11] |
J. Hofbauer and K. Sigmund, Evolutionary games and population dynamics, Cambridge University Press, Cambridge, 1998.
doi: 10.1017/CBO9781139173179.![]() ![]() ![]() |
[12] |
K. Ichihara and H. Kunita, A classification of the second order degenerate elliptic operators and its probabilistic characterization, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 30 (1974), 235-254.
doi: 10.1007/BF00533476.![]() ![]() ![]() |
[13] |
S. r. F. Jarner and G. O. Roberts, Polynomial convergence rates of {M}arkov chains, Ann. Appl. Probab., 12 (2002), 224-247.
doi: 10.1214/aoap/1015961162.![]() ![]() ![]() |
[14] |
R. Lande, S. Engen, B.-E. Saether, et al., Stochastic Population Dynamics in Ecology and Conservation, Oxford University Press on Demand, 2003.
![]() |
[15] |
S. P. Meyn and R. L. Tweedie, Stability of Markovian processes. I. Criteria for discrete-time chains, Adv. in Appl. Probab., 24 (1992), 542-574.
doi: 10.2307/1427479.![]() ![]() ![]() |
[16] |
S. J. Schreiber, The evolution of patch selection in stochastic environments, The American Naturalist, 180 (2012), 17-34.
doi: 10.1086/665655.![]() ![]() |
[17] |
S. J. Schreiber, M. Benaïm and K. A. S. Atchadé, Persistence in fluctuating environments, J. Math. Biol., 62 (2011), 655-683.
doi: 10.1007/s00285-010-0349-5.![]() ![]() ![]() |