The Benney-Lin equation describes the evolution of long waves in various problems in fluid dynamics. In this paper, we prove the well-posedness of the Cauchy problem, associated with this equation.
Citation: |
[1] |
R. Adams and S. C. Mancas, Stability of solitary and cnoidal traveling wave solutions for a fifth order Korteweg–de Vries equation, Appl. Math. Comput., 321 (2018), 745-751.
doi: 10.1016/j.amc.2017.11.005.![]() ![]() ![]() |
[2] |
E. M. Al-Ali, Traveling wave solutions for a generalized Kawahara and Hunter-Saxton equations, Int. J. Math. Anal. (Ruse), 7 (2013), 1647-1666.
doi: 10.12988/ijma.2013.3483.![]() ![]() ![]() |
[3] |
A. Armaou and P. D. Christofides, Feedback control of the Kuramoto-Sivashinsky equation, Phys. D, 137 (2000), 49-61.
doi: 10.1016/S0167-2789(99)00175-X.![]() ![]() ![]() |
[4] |
A. Başhan, An efficient approximation to numerical solutions for the Kawahara equation via modified cubic B-spline differential quadrature method, Mediterr. J. Math., 16 (2019), Paper No. 14, 19.
doi: 10.1007/s00009-018-1291-9.![]() ![]() |
[5] |
D. J. Benney, Long waves on liquid films, J. Math. and Phys., 45 (1966), 150-155.
doi: 10.1002/sapm1966451150.![]() ![]() ![]() |
[6] |
N. G. Berloff and L. N. Howard, Solitary and periodic solutions of nonlinear nonintegrable equations, Stud. Appl. Math., 99 (1997), 1-24.
doi: 10.1111/1467-9590.00054.![]() ![]() ![]() |
[7] |
H. A. Biagioni, J. L. Bona, R. J. Iório Jr. and M. Scialom, On the Korteweg-de Vries-Kuramoto-Sivashinsky equation, Adv. Differential Equations, 1 (1996), 1-20.
![]() ![]() |
[8] |
H. A. Biagioni and F. Linares, On the Benney-Lin and Kawahara equations, J. Math. Anal. Appl., 211 (1997), 131-152.
doi: 10.1006/jmaa.1997.5438.![]() ![]() ![]() |
[9] |
A. Biswas, Solitary wave solution for the generalized Kawahara equation, Appl. Math. Lett., 22 (2009), 208-210.
doi: 10.1016/j.aml.2008.03.011.![]() ![]() ![]() |
[10] |
R. d. A. Capistrano-Filho and M. M. d. S. Gomes, Well-posedness and controllability of Kawahara equation in weighted Sobolev spaces, Nonlinear Anal., 207 (2021), Paper No. 112267, 24 pp.
doi: 10.1016/j.na.2021.112267.![]() ![]() ![]() |
[11] |
M. Cavalcante and C. Kwak, Local well-posedness of the fifth-order KdV-type equations on the half-line, Commun. Pure Appl. Anal., 18 (2019), 2607-2661.
doi: 10.3934/cpaa.2019117.![]() ![]() ![]() |
[12] |
M. Cavalcante and C. Kwak, The initial-boundary value problem for the Kawahara equation on the half-line, NoDEA Nonlinear Differential Equations Appl., 27 (2020), Paper No. 45, 50 pp.
doi: 10.1007/s00030-020-00648-6.![]() ![]() ![]() |
[13] |
J. C. Ceballos, M. Sepúlveda and O. P. Vera Villagrán, The Korteweg-de Vries-Kawahara equation in a bounded domain and some numerical results, Appl. Math. Comput., 190 (2007), 912-936.
doi: 10.1016/j.amc.2007.01.107.![]() ![]() ![]() |
[14] |
E. Cerpa, Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation, Commun. Pure Appl. Anal., 9 (2010), 91-102.
doi: 10.3934/cpaa.2010.9.91.![]() ![]() ![]() |
[15] |
L.-H. Chen and H.-C. Chang, Nonlinear waves on liquid film surfaces-ii. bifurcation analyses of the long-wave equation, Chemical Engineering Science, 41 (1986), 2477-2486.
doi: 10.1016/0009-2509(86)80033-1.![]() ![]() |
[16] |
W. Chen and J. Li, On the low regularity of the Benney-Lin equation, J. Math. Anal. Appl., 339 (2008), 1134-1147.
doi: 10.1016/j.jmaa.2007.07.045.![]() ![]() ![]() |
[17] |
P. D. Christofides and A. Armaou, Global stabilization of the Kuramoto-Sivashinsky equation via distributed output feedback control, Systems Control Lett., 39 (2000), 283-294.
doi: 10.1016/S0167-6911(99)00108-5.![]() ![]() ![]() |
[18] |
G. Coclite and L. di Ruvo, On classical solutions for the fifth-order short pulse equation, Math. Methods Appl. Sci., 44 (2021), 8814-8837.
doi: 10.1002/mma.7309.![]() ![]() ![]() |
[19] |
G. M. Coclite and L. di Ruvo, Convergence of the Ostrovsky equation to the Ostrovsky-Hunter one, J. Differential Equations, 256 (2014), 3245-3277.
doi: 10.1016/j.jde.2014.02.001.![]() ![]() ![]() |
[20] |
G. M. Coclite and L. di Ruvo, Dispersive and diffusive limits for Ostrovsky-Hunter type equations, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 1733-1763.
doi: 10.1007/s00030-015-0342-1.![]() ![]() ![]() |
[21] |
G. M. Coclite and L. di Ruvo, Convergence of the Kuramoto-Sinelshchikov equation to the Burgers one, Acta Appl. Math., 145 (2016), 89-113.
doi: 10.1007/s10440-016-0049-2.![]() ![]() ![]() |
[22] |
G. M. Coclite and L. di Ruvo, Convergence results related to the modified Kawahara equation, Boll. Unione Mat. Ital., 8 (2016), 265-286.
doi: 10.1007/s40574-015-0043-z.![]() ![]() ![]() |
[23] |
G. M. Coclite and L. di Ruvo, A singular limit problem for conservation laws related to the Kawahara equation, Bull. Sci. Math., 140 (2016), 303-338.
doi: 10.1016/j.bulsci.2015.12.003.![]() ![]() ![]() |
[24] |
G. M. Coclite and L. di Ruvo, A singular limit problem for conservation laws related to the Kawahara-Korteweg-de Vries equation, Netw. Heterog. Media, 11 (2016), 281-300.
doi: 10.3934/nhm.2016.11.281.![]() ![]() ![]() |
[25] |
G. M. Coclite and L. di Ruvo, A singular limit problem for conservation laws related to the Rosenau equation, J. Abstr. Differ. Equ. Appl., 8 (2017), 24-47.
![]() ![]() |
[26] |
G. M. Coclite and L. di Ruvo, Convergence of the regularized short pulse equation to the short pulse one, Math. Nachr., 291 (2018), 774-792.
doi: 10.1002/mana.201600301.![]() ![]() ![]() |
[27] |
G. M. Coclite and L. di Ruvo, Well-posedness and dispersive/diffusive limit of a generalized Ostrovsky-Hunter equation, Milan J. Math., 86 (2018), 31-51.
doi: 10.1007/s00032-018-0278-0.![]() ![]() ![]() |
[28] |
G. M. Coclite and L. di Ruvo, Convergence of the Rosenau-Korteweg-deVries equation to the Korteweg-deVries one, Contemporary Mathematics, 1 (2020), 393-420.
![]() |
[29] |
G. M. Coclite and L. di Ruvo, $H^1$ solutions a Kuramoto-Sinelshchikov-Cahn-Hilliard type equation, To appear on Ric. Mat.
![]() |
[30] |
G. M. Coclite and L. di Ruvo, A note on the solutions for a higher-order convective cahn-hilliard-type equation, Mathematics, 8 (2020).
doi: 10.3390/math8101835.![]() ![]() |
[31] |
G. M. Coclite and L. di Ruvo, On classical solutions for a Kuramoto-Sinelshchikov-Velarde-type equation, Algorithms (Basel), 13 (2020), Paper No. 77, 22 pp.
doi: 10.3390/a13040077.![]() ![]() ![]() |
[32] |
G. M. Coclite and L. di Ruvo, On the solutions for an Ostrovsky type equation, Nonlinear Anal. Real World Appl., 55 (2020), 103141, 31 pp.
doi: 10.1016/j.nonrwa.2020.103141.![]() ![]() ![]() |
[33] |
G. M. Coclite and L. di Ruvo, On the well-posedness of a high order convective Cahn-Hilliard type equations, Algorithms (Basel), 13 (2020), Paper No. 170, 24 pp.
doi: 10.3390/a13070170.![]() ![]() ![]() |
[34] |
G. M. Coclite and L. di Ruvo, On the initial-boundary value problem for a Kuramoto-Sinelshchikov type equation, Math. Eng., 3 (2021), Paper No. 036, 43 pp.
doi: 10.3934/mine.2021036.![]() ![]() ![]() |
[35] |
G. M. Coclite and L. di Ruvo, Well-posedness of the classical solution for the Kuramto-Sivashinsky equation with anisotropy effects, Z. Angew. Math. Phys., 72 (2021), Paper No. 68, 37 pp.
doi: 10.1007/s00033-021-01506-w.![]() ![]() ![]() |
[36] |
G. M. Coclite and L. di Ruvo, Well-posedness of the classical solutions for a Kawahara–Korteweg–de Vries-type equation, J. Evol. Equ., 21 (2021), 625-651.
doi: 10.1007/s00028-020-00594-x.![]() ![]() ![]() |
[37] |
G. M. Coclite and L. d. Ruvo, Well-posedness results for the continuum spectrum pulse equation, Mathematics, 7 (2019).
doi: 10.3390/math7111006.![]() ![]() |
[38] |
G. M. Coclite and M. Garavello, A time-dependent optimal harvesting problem with measure-valued solutions, SIAM J. Control Optim., 55 (2017), 913-935.
doi: 10.1137/16M1061886.![]() ![]() ![]() |
[39] |
G. M. Coclite, M. Garavello and L. V. Spinolo, Optimal strategies for a time-dependent harvesting problem, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 865-900.
doi: 10.3934/dcdss.2018053.![]() ![]() ![]() |
[40] |
S. B. Cui, D. G. Deng and S. P. Tao, Global existence of solutions for the Cauchy problem of the Kawahara equation with $L^2$ initial data, Acta Math. Sin. (Engl. Ser.), 22 (2006), 1457-1466.
doi: 10.1007/s10114-005-0710-6.![]() ![]() ![]() |
[41] |
S. Cui and S. Tao, Strichartz estimates for dispersive equations and solvability of the Kawahara equation, J. Math. Anal. Appl., 304 (2005), 683-702.
doi: 10.1016/j.jmaa.2004.09.049.![]() ![]() ![]() |
[42] |
Y. l. Dereli and I. Dağ, Numerical solutions of the Kawahara type equations using radial basis functions, Numer. Methods Partial Differential Equations, 28 (2012), 542-553.
doi: 10.1002/num.20633.![]() ![]() ![]() |
[43] |
G. G. Doronin and N. Larkin, Well and ill-posed problems for the KdV and Kawahara equations, Bol. Soc. Parana. Mat., 26 (2008), 133-137.
doi: 10.5269/bspm.v26i1-2.7419.![]() ![]() ![]() |
[44] |
G. G. Doronin and N. A. Larkin, Kawahara equation in a bounded domain, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 783-799.
doi: 10.3934/dcdsb.2008.10.783.![]() ![]() ![]() |
[45] |
A. V. Faminskiĭ and E. V. Martynov, On an initial boundary value problem on the semiaxis for the generalized Kawahara equation, Sovrem. Mat. Fundam. Napravl., 65 (2019), 683-699.
doi: 10.22363/2413-3639-2019-65-4-683-699.![]() ![]() ![]() |
[46] |
C. Foias, B. Nicolaenko, G. R. Sell and R. Temam, Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension, J. Math. Pures Appl., 67 (1988), 197-226.
![]() ![]() |
[47] |
L. Giacomelli and F. Otto, New bounds for the Kuramoto-Sivashinsky equation, Comm. Pure Appl. Math., 58 (2005), 297-318.
doi: 10.1002/cpa.20031.![]() ![]() ![]() |
[48] |
A. P. Hooper and R. Grimshaw, Nonlinear instability at the interface between two viscous fluids, The Physics of Fluids, 28 (1985), 37-45.
doi: 10.1063/1.865160.![]() ![]() |
[49] |
C. Hu and R. Temam, Robust control of the Kuramoto-Sivashinsky equation, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 8 (2001), 315-338.
![]() ![]() |
[50] |
Y. Jia and Z. Huo, Well-posedness for the fifth-order shallow water equations, J. Differential Equations, 246 (2009), 2448-2467.
doi: 10.1016/j.jde.2008.10.027.![]() ![]() ![]() |
[51] |
A. Kabakouala and L. Molinet, On the stability of the solitary waves to the (generalized) Kawahara equation, J. Math. Anal. Appl., 457 (2018), 478-497.
doi: 10.1016/j.jmaa.2017.08.021.![]() ![]() ![]() |
[52] |
B. G. Karakoç, H. Zeybek and T. Ak, Numerical solutions of the Kawahara equation by the septic B-spline collocation method, Stat. Optim. Inf. Comput., 2 (2014), 211-221.
doi: 10.19139/74.![]() ![]() ![]() |
[53] |
T. Kato, Local well-posedness for Kawahara equation, Adv. Differential Equations, 16 (2011), 257-287.
![]() ![]() |
[54] |
T. Kato, Global well-posedness for the Kawahara equation with low regularity, Commun. Pure Appl. Anal., 12 (2013), 1321-1339.
doi: 10.3934/cpaa.2013.12.1321.![]() ![]() ![]() |
[55] |
T. Kawahara, Oscillatory solitary waves in dispersive media, Journal of the Physical Society of Japan, 33 (1972), 260-264.
doi: 10.1143/JPSJ.33.260.![]() ![]() |
[56] |
C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.
doi: 10.1002/cpa.3160460405.![]() ![]() ![]() |
[57] |
C. Khalique, Exact solutions of the generalized kuramoto-sivashinsky equation, Caspian Journal of Mathematical Sciences (CJMS), 1 (2012), 109-116.
![]() |
[58] |
N. Khanal, J. Wu and J.-M. Yuan, The Kawahara equation in weighted Sobolev spaces, Nonlinearity, 21 (2008), 1489-1505.
doi: 10.1088/0951-7715/21/7/007.![]() ![]() ![]() |
[59] |
D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 39 (1895), 422-443.
doi: 10.1080/14786449508620739.![]() ![]() ![]() |
[60] |
N. A. Kudryashov, Exact solutions of the generalized Kuramoto-Sivashinsky equation, Phys. Lett. A, 147 (1990), 287-291.
doi: 10.1016/0375-9601(90)90449-X.![]() ![]() ![]() |
[61] |
N. A. Kudryashov, On "new travelling wave solutions" of the KdV and the KdV-Burgers equations, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1891-1900.
doi: 10.1016/j.cnsns.2008.09.020.![]() ![]() ![]() |
[62] |
Y. Kuramoto, Diffusion-induced chaos in reaction systems, Progress of Theoretical Physics Supplement, 64 (1978), 346-367.
doi: 10.1143/PTPS.64.346.![]() ![]() |
[63] |
Y. Kuramoto and T. Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems: Reductive perturbation approach, Progress of Theoretical Physics, 54 (1975), 687-699.
doi: 10.1143/PTP.54.687.![]() ![]() |
[64] |
Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Progress of Theoretical Physics, 55 (1976), 356-369.
doi: 10.1143/PTP.55.356.![]() ![]() |
[65] |
R. E. LaQuey, S. M. Mahajan, P. H. Rutherford and W. M. Tang, Nonlinear saturation of the trapped-ion mode, Phys. Rev. Lett., 34 (1975), 391-394.
doi: 10.1103/PhysRevLett.34.391.![]() ![]() |
[66] |
P. G. LeFloch and R. Natalini, Conservation laws with vanishing nonlinear diffusion and dispersion, Nonlinear Anal., 36 (1999), 213-230.
doi: 10.1016/S0362-546X(98)00012-1.![]() ![]() ![]() |
[67] |
C. Li, G. Chen and S. Zhao, Exact travelling wave solutions to the generalized kuramoto-sivashinsky equation, Latin American Applied Research, 34 (2004), 65-68.
![]() |
[68] |
J. Li, B.-Y. Zhang and Z. Zhang, A nonhomogeneous boundary value problem for the Kuramoto-Sivashinsky equation in a quarter plane, Math. Methods Appl. Sci., 40 (2017), 5619-5641.
doi: 10.1002/mma.4413.![]() ![]() ![]() |
[69] |
J. Li, B.-Y. Zhang and Z. Zhang, A non-homogeneous boundary value problem for the Kuramoto-Sivashinsky equation posed in a finite interval, ESAIM Control Optim. Calc. Var., 26 (2020), Paper No. 43, 26 pp.
doi: 10.1051/cocv/2019027.![]() ![]() ![]() |
[70] |
S. P. Lin, Finite amplitude side-band stability of a viscous film, Journal of Fluid Mechanics, 63 (1974), 417-429.
doi: 10.1017/S0022112074001704.![]() ![]() |
[71] |
W.-J. Liu and M. Krstić, Stability enhancement by boundary control in the Kuramoto-Sivashinsky equation, Nonlinear Anal., 43 (2001), 485-507.
doi: 10.1016/S0362-546X(99)00215-1.![]() ![]() ![]() |
[72] |
J. Lu, Analytical approach to Kawahara equation using variational iteration method and homotopy perturbation method, Topol. Methods Nonlinear Anal., 31 (2008), 287-293.
![]() ![]() |
[73] |
S. C. Mancas, Traveling wave solutions to Kawahara and related equations, Differ. Equ. Dyn. Syst., 27 (2019), 19-37.
doi: 10.1007/s12591-017-0367-5.![]() ![]() ![]() |
[74] |
L. Molinet and Y. Wang, Dispersive limit from the Kawahara to the KdV equation, J. Differential Equations, 255 (2013), 2196-2219.
doi: 10.1016/j.jde.2013.06.012.![]() ![]() ![]() |
[75] |
F. Natali, A note on the stability for Kawahara-KdV type equations, Appl. Math. Lett., 23 (2010), 591-596.
doi: 10.1016/j.aml.2010.01.017.![]() ![]() ![]() |
[76] |
B. Nicolaenko and B. Scheurer, Remarks on the Kuramoto-Sivashinsky equation, Phys. D, 12 (1984), 391-395.
doi: 10.1016/0167-2789(84)90543-8.![]() ![]() ![]() |
[77] |
B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of the Kuramoto-Sivashinsky equations: Nonlinear stability and attractors, Phys. D, 16 (1985), 155-183.
doi: 10.1016/0167-2789(85)90056-9.![]() ![]() ![]() |
[78] |
A. Paliathanasis, Benneylin and kawahara equations: A detailed study through lie symmetries and painlevé analysis, Physica Scripta, 94 (2019), 125204.
![]() |
[79] |
Z. Pınar and T. Öziş, The periodic solutions to Kawahara equation by means of the auxiliary equation with a sixth-degree nonlinear term, J. Math., 2013 (2013), Art. ID 106349, 8 pp.
doi: 10.1155/2013/106349.![]() ![]() ![]() |
[80] |
A. Saboor Bagherzadeh, B-spline collocation method for numerical solution of nonlinear Kawahara and modified Kawahara equations, TWMS J. Appl. Eng. Math., 7 (2017), 188-199.
![]() ![]() |
[81] |
M. Sajjadian, The shock profile wave propagation of Kuramoto-Sivashinsky equation and solitonic solutions of generalized Kuramoto-Sivashinsky equation, Acta Univ. Apulensis Math. Inform., (2014), 163–176.
![]() ![]() |
[82] |
M. E. Schonbek, Convergence of solutions to nonlinear dispersive equations, Comm. Partial Differential Equations, 7 (1982), 959-1000.
doi: 10.1080/03605308208820242.![]() ![]() ![]() |
[83] |
J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360.![]() ![]() ![]() |
[84] |
G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames. I. Derivation of basic equations, Acta Astronaut., 4 (1977), 1177-1206.
doi: 10.1016/0094-5765(77)90096-0.![]() ![]() ![]() |
[85] |
E. Tadmor, The well-posedness of the Kuramoto-Sivashinsky equation, SIAM J. Math. Anal., 17 (1986), 884-893.
doi: 10.1137/0517063.![]() ![]() ![]() |
[86] |
J. Topper and T. Kawahara, Approximate equations for long nonlinear waves on a viscous fluid, J. Phys. Soc. Japan, 44 (1978), 663-666.
doi: 10.1143/JPSJ.44.663.![]() ![]() ![]() |
[87] |
O. Trichtchenko, B. Deconinck and R. Kollár, Stability of periodic traveling wave solutions to the Kawahara equation, SIAM J. Appl. Dyn. Syst., 17 (2018), 2761-2783.
doi: 10.1137/18M1196121.![]() ![]() ![]() |
[88] |
H. Wang, S. B. Cui and D. G. Deng, Global existence of solutions for the Kawahara equation in Sobolev spaces of negative indices, Acta Math. Sin. (Engl. Ser.), 23 (2007), 1435-1446.
doi: 10.1007/s10114-007-0959-z.![]() ![]() ![]() |
[89] |
Y. Xie, Solving the generalized Benney equation by a combination method, Int. J. Nonlinear Sci., 15 (2013), 350-354.
![]() ![]() |
[90] |
W. Yan and Y. Li, The Cauchy problem for Kawahara equation in Sobolev spaces with low regularity, Math. Methods Appl. Sci., 33 (2010), 1647-1660.
doi: 10.1002/mma.1273.![]() ![]() ![]() |
[91] |
J.-M. Yuan, J. Shen and J. Wu, A dual-Petrov-Galerkin method for the Kawahara-type equations, J. Sci. Comput., 34 (2008), 48-63.
doi: 10.1007/s10915-007-9158-4.![]() ![]() ![]() |
[92] |
X. Yuan-Xi, New explicit and exact solutions of the benney–kawahara–lin equation, Chinese Physics B, 18 (2009), 4094.
doi: 10.1088/1674-1056/18/10/005.![]() ![]() |
[93] |
Z. Zhang, Z. Liu, M. Sun and S. Li, Well-posedness and unique continuation property for the solutions to the generalized Kawahara equation below the energy space, Appl. Anal., 97 (2018), 2655-2685.
doi: 10.1080/00036811.2017.1385064.![]() ![]() ![]() |
[94] |
Z. Zhang, Z. Liu, M. Sun and S. Li, Low regularity for the higher order nonlinear dispersive equation in Sobolev spaces of negative index, J. Dynam. Differential Equations, 31 (2019), 419-433.
doi: 10.1007/s10884-018-9669-8.![]() ![]() ![]() |
[95] |
X. Q. Zhao and S. B. Cui, On Cauchy problem of the Benney-Lin equation with low regularity initial data, Acta Math. Sin. (Engl. Ser.), 25 (2009), 2157-2168.
doi: 10.1007/s10114-009-7029-7.![]() ![]() ![]() |
[96] |
Y. Zhou and Q. Liu, Series solutions and bifurcation of traveling waves in the Benney-Kawahara-Lin equation, Nonlinear Dynamics, 96 (2019), 2055-2067.
doi: 10.1007/s11071-019-04905-x.![]() ![]() |