This paper investigates the well-posedness of Hall-magnetohydrodynamics system. By using a new current function $ J = \nabla\times B $ as an additional unknown. The mild solution of Hall-MHD exists globally in the nonhomogeneous Lei-Lin space setting provided that the initial data satisfies $ \|u_{0}\|_{\mathcal{X}^{-1} }+\|B_{0}\|_{ \mathcal{X}^{-1}}+\|J_{0}\|_{ \mathcal{X}^{-1}}<\min \{\frac{\mu }{2}, \frac{\nu }{2}\}. $
Citation: |
[1] |
M. Acheritogaray, P. Degond, A. Frouvelle and J.-G. Liu, Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system, Kinet. Relat. Models, 4 (2011), 901-918.
doi: 10.3934/krm.2011.4.901.![]() ![]() ![]() |
[2] |
H. Bae, Existence and analyticity of Lei-Lin solution to the Navier-Stokes equations, Proc. Amer. Math. Soc., 143 (2015), 2887-2892.
doi: 10.1090/S0002-9939-2015-12266-6.![]() ![]() ![]() |
[3] |
H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, volume 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer, Heidelberg, 2011.
doi: 10.1007/978-3-642-16830-7.![]() ![]() ![]() |
[4] |
M. J. Benvenutti and L. C. F. Ferreira, Existence and stability of global large strong solutions for the Hall-MHD system, Differential Integral Equations, 29 (2016), 977-1000.
![]() ![]() |
[5] |
M. Cannone and G. Wu, Global well-posedness for Navier-Stokes equations in critical Fourier-Herz spaces, Nonlinear Anal., 75 (2012), 3754-3760.
doi: 10.1016/j.na.2012.01.029.![]() ![]() ![]() |
[6] |
D. Chae, P. Degond and J.-G. Liu, Well-posedness for Hall-magnetohydrodynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 555-565.
doi: 10.1016/j.anihpc.2013.04.006.![]() ![]() ![]() |
[7] |
D. Chae and J. Lee, On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics, J. Differential Equations, 256 (2014), 3835-3858.
doi: 10.1016/j.jde.2014.03.003.![]() ![]() ![]() |
[8] |
J.-Y. Chemin and I. Gallagher, Wellposedness and stability results for the Navier-Stokes equations in ${\bf{R}}^3$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 599-624.
doi: 10.1016/j.anihpc.2007.05.008.![]() ![]() ![]() |
[9] |
A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics, volume 4 of Texts in Applied Mathematics, Springer-Verlag, New York, third edition, 1993.
doi: 10.1007/978-1-4612-0883-9.![]() ![]() ![]() |
[10] |
R. Danchin and J. Tan, On the well-posedness of the Hall-magnetohydrodynamics system in critical spaces, Comm. Partial Differential Equations, 46 (2021), 31-65.
doi: 10.1080/03605302.2020.1822392.![]() ![]() ![]() |
[11] |
R. Danchin and J. Tan, The global solvability of the hall-magnetohydrodynamics system in critical sobolev spaces, arXiv e-prints, arXiv: 1912.09194, 2019.
![]() |
[12] |
L. Jlali, Global well posedness of 3D-NSE in Fourier-Lei-Lin spaces, Math. Methods Appl. Sci., 40 (2017), 2713-2736.
doi: 10.1002/mma.4193.![]() ![]() ![]() |
[13] |
M. Kwak and B. Lkhagvasuren, Global wellposedness for Hall-MHD equations, Nonlinear Anal., 174 (2018), 104-117.
doi: 10.1016/j.na.2018.04.014.![]() ![]() ![]() |
[14] |
Z. Lei and F. Lin, Global mild solutions of Navier-Stokes equations, Comm. Pure Appl. Math., 64 (2011), 1297-1304.
doi: 10.1002/cpa.20361.![]() ![]() ![]() |
[15] |
L. Liu and J. Tan, Global well-posedness for the Hall-magnetohydrodynamics system in larger critical Besov spaces, J. Differential Equations, 274 (2021), 382-413.
doi: 10.1016/j.jde.2020.10.014.![]() ![]() ![]() |
[16] |
V. A. Urpin and D. A. Shalybkov, The hall effect and the decay of magnetic fields, Astron. Astrophys., 321 (1997), 685-690.
![]() |
[17] |
R. Wan and Y. Zhou, On global existence, energy decay and blow-up criteria for the Hall-MHD system, J. Differential Equations, 259 (2015), 5982-6008.
doi: 10.1016/j.jde.2015.07.013.![]() ![]() ![]() |
[18] |
R. Wan and Y. Zhou, Global well-posedness, BKM blow-up criteria and zero $h$ limit for the 3D incompressible Hall-MHD equations, J. Differential Equations, 267 (2019), 3724-3747.
doi: 10.1016/j.jde.2019.04.020.![]() ![]() ![]() |
[19] |
M. Wardle, Star formation and the hall effect, Astrophys. Space Sci., 292 (2004), 317-323.
![]() |
[20] |
X. Wu, Y. Yu and Y. Tang, Well-posedness for the incompressible Hall-MHD equations in low regularity spaces, Mediterr. J. Math., 15 (2018), Paper No. 48, 14 pp.
doi: 10.1007/s00009-018-1096-x.![]() ![]() ![]() |
[21] |
Z. Ye, Global well-posedness and decay results to 3D generalized viscous magnetohydrodynamic equations, Ann. Mat. Pura Appl. (4), 195 (2016), 1111-1121.
doi: 10.1007/s10231-015-0507-x.![]() ![]() ![]() |