\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the global existence to Hall-MHD system

Abstract Full Text(HTML) Related Papers Cited by
  • This paper investigates the well-posedness of Hall-magnetohydrodynamics system. By using a new current function $ J = \nabla\times B $ as an additional unknown. The mild solution of Hall-MHD exists globally in the nonhomogeneous Lei-Lin space setting provided that the initial data satisfies $ \|u_{0}\|_{\mathcal{X}^{-1} }+\|B_{0}\|_{ \mathcal{X}^{-1}}+\|J_{0}\|_{ \mathcal{X}^{-1}}<\min \{\frac{\mu }{2}, \frac{\nu }{2}\}. $

    Mathematics Subject Classification: Primary: 35A01, 35J47; Secondary: 35Q35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. AcheritogarayP. DegondA. Frouvelle and J.-G. Liu, Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system, Kinet. Relat. Models, 4 (2011), 901-918.  doi: 10.3934/krm.2011.4.901.
    [2] H. Bae, Existence and analyticity of Lei-Lin solution to the Navier-Stokes equations, Proc. Amer. Math. Soc., 143 (2015), 2887-2892.  doi: 10.1090/S0002-9939-2015-12266-6.
    [3] H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, volume 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.
    [4] M. J. Benvenutti and L. C. F. Ferreira, Existence and stability of global large strong solutions for the Hall-MHD system, Differential Integral Equations, 29 (2016), 977-1000. 
    [5] M. Cannone and G. Wu, Global well-posedness for Navier-Stokes equations in critical Fourier-Herz spaces, Nonlinear Anal., 75 (2012), 3754-3760.  doi: 10.1016/j.na.2012.01.029.
    [6] D. ChaeP. Degond and J.-G. Liu, Well-posedness for Hall-magnetohydrodynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 555-565.  doi: 10.1016/j.anihpc.2013.04.006.
    [7] D. Chae and J. Lee, On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics, J. Differential Equations, 256 (2014), 3835-3858.  doi: 10.1016/j.jde.2014.03.003.
    [8] J.-Y. Chemin and I. Gallagher, Wellposedness and stability results for the Navier-Stokes equations in ${\bf{R}}^3$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 599-624.  doi: 10.1016/j.anihpc.2007.05.008.
    [9] A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics, volume 4 of Texts in Applied Mathematics, Springer-Verlag, New York, third edition, 1993. doi: 10.1007/978-1-4612-0883-9.
    [10] R. Danchin and J. Tan, On the well-posedness of the Hall-magnetohydrodynamics system in critical spaces, Comm. Partial Differential Equations, 46 (2021), 31-65.  doi: 10.1080/03605302.2020.1822392.
    [11] R. Danchin and J. Tan, The global solvability of the hall-magnetohydrodynamics system in critical sobolev spaces, arXiv e-prints, arXiv: 1912.09194, 2019.
    [12] L. Jlali, Global well posedness of 3D-NSE in Fourier-Lei-Lin spaces, Math. Methods Appl. Sci., 40 (2017), 2713-2736.  doi: 10.1002/mma.4193.
    [13] M. Kwak and B. Lkhagvasuren, Global wellposedness for Hall-MHD equations, Nonlinear Anal., 174 (2018), 104-117.  doi: 10.1016/j.na.2018.04.014.
    [14] Z. Lei and F. Lin, Global mild solutions of Navier-Stokes equations, Comm. Pure Appl. Math., 64 (2011), 1297-1304.  doi: 10.1002/cpa.20361.
    [15] L. Liu and J. Tan, Global well-posedness for the Hall-magnetohydrodynamics system in larger critical Besov spaces, J. Differential Equations, 274 (2021), 382-413.  doi: 10.1016/j.jde.2020.10.014.
    [16] V. A. Urpin and D. A. Shalybkov, The hall effect and the decay of magnetic fields, Astron. Astrophys., 321 (1997), 685-690. 
    [17] R. Wan and Y. Zhou, On global existence, energy decay and blow-up criteria for the Hall-MHD system, J. Differential Equations, 259 (2015), 5982-6008.  doi: 10.1016/j.jde.2015.07.013.
    [18] R. Wan and Y. Zhou, Global well-posedness, BKM blow-up criteria and zero $h$ limit for the 3D incompressible Hall-MHD equations, J. Differential Equations, 267 (2019), 3724-3747.  doi: 10.1016/j.jde.2019.04.020.
    [19] M. Wardle, Star formation and the hall effect, Astrophys. Space Sci., 292 (2004), 317-323. 
    [20] X. Wu, Y. Yu and Y. Tang, Well-posedness for the incompressible Hall-MHD equations in low regularity spaces, Mediterr. J. Math., 15 (2018), Paper No. 48, 14 pp. doi: 10.1007/s00009-018-1096-x.
    [21] Z. Ye, Global well-posedness and decay results to 3D generalized viscous magnetohydrodynamic equations, Ann. Mat. Pura Appl. (4), 195 (2016), 1111-1121.  doi: 10.1007/s10231-015-0507-x.
  • 加载中
SHARE

Article Metrics

HTML views(558) PDF downloads(309) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return