First of all, by virtue of the Faedo-Galerkin procedure, we obtain existence of solution for the Kirchhoff type plate equation with memory and nonlinear damping on $ \mathbb{R}^{n}. $ Secondly, using a new method of asymptotic contractive functions presented in [
Citation: |
[1] | A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992. |
[2] | H. M. Berger, A new approach to the analysis of large deflections of plates, J. Appl. Mech., 22 (1955), 465-472. doi: 10.1115/1.4011138. |
[3] | M. Conti and V. Pata, Asymptotic structure of the attractor for processes on time-dependent spaces, Nonlinear Anal. Real World Appl., 19 (2014), 1-10. doi: 10.1016/j.nonrwa.2014.02.002. |
[4] | M. Conti and V. Pata, On the time-dependent Cattaneo law in space dimension one, Appl. Math. Compu., 259 (2015), 32-44. doi: 10.1016/j.amc.2015.02.039. |
[5] | M. Conti, V. Pata and R. Temam, Attractors for processes on time-dependent spaces. Applications to wave equations, J. Differential Equations, 255 (2013), 1254-1277. doi: 10.1016/j.jde.2013.05.013. |
[6] | C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 297-308. doi: 10.1007/BF00251609. |
[7] | A. K. Khanmamedov, Existence of a global attractor for the plate equation with a critical exponent in an unbounded domain, Appl. Math. Lett., 18 (2005), 827-832. doi: 10.1016/j.aml.2004.08.013. |
[8] | A. K. Khanmamedov, Global attractors for the plate equation with a localized damping and a critical exponent in an unbounded domain, J. Differential Equations, 255 (2006), 528-548. doi: 10.1016/j.jde.2005.12.001. |
[9] | T. T. Liu and Q. Z. Ma, Time-dependent attractor for plate equations on $\mathbb{R}^{n}$, J. Math. Anal. Appl., 479 (2019), 315-332. doi: 10.1016/j.jmaa.2019.06.028. |
[10] | T. T. Liu and Q. Z. Ma, Time-dependent asymptotic behavior of the solution for plate equations with linear memory, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4595-4616. doi: 10.3934/dcdsb.2018178. |
[11] | T. T. Liu and Q. Z. Ma, The existence of time-dependent strong pullback attractors for non-autonomous plate equations(Chinese), translation in Chinese J. Contemp. Math., 38 (2017), 101-118. |
[12] | Q. F. Ma, S. H. Wang and C. K. Zhong, Necessary and sufficient conditions for the existence of global attractor for semigroups and applications, Indiana Univ. Math. J., 51 (2002), 1541-1559. doi: 10.1512/iumj.2002.51.2255. |
[13] | F. J. Meng and C. C. Liu, Necessary and sufficient conditions for the existence of time-dependent global attractor and application, J. Math. Phys., 58 (2017), 032702, 9 pp. doi: 10.1063/1.4978329. |
[14] | F. J. Meng, J. Wu and C. X. Zhao, Time-dependent global attractor for extensible Berger equation, J. Math. Anal. Appl., 469 (2019), 1045-1069. doi: 10.1016/j.jmaa.2018.09.050. |
[15] | F. J. Meng, M. H. Yang and C. K. Zhong, Attractors for wave equations with nonlinear damping on time-dependent space, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 205-225. doi: 10.3934/dcdsb.2016.21.205. |
[16] | F. Morillas and J. Valero, Attractors for reaction-diffusion equations in $\mathbb{R}^n$ with continuous nonlinearity, Asymptotic Anal., 44 (2005)1, 111–130. |
[17] | V. Pata, Attractors for a damped wave equation on $\mathbb{R}^3$ with linear memory, Math. Methods Appl. Sci., 23 (2000), 633-653. doi: 10.1002/(SICI)1099-1476(20000510)23:7<633::AID-MMA135>3.0.CO;2-C. |
[18] | V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529. |
[19] | D. Plinio, G. S. Duane and R. Temam, Time-Dependent attractor for the oscillon equation, Discrete Contin. Dyn. Syst., 29 (2011), 141-167. doi: 10.3934/dcds.2011.29.141. |
[20] | J. E. M. River and L. H. Fatori, Smoothing effect and propagations of singularities for viscoelastic plates, J. Math. Anal. Appl., 206 (1997), 397-427. doi: 10.1006/jmaa.1997.5223. |
[21] | J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge University Press, Cambridge, 2001. |
[22] | M. A. J. Silva and T. F. Ma, On a viscoelastic plate equation with history setting and perturbation of p-Laplacian type, Ima J. Appl. Math., 78 (2013), 1130-1146. doi: 10.1093/imamat/hxs011. |
[23] | M. A. J. Silva and T. F. Ma, Long-time dynamics for a class of Kirchhoff models with memory, J. Math. Phys., 54 (2013), 021505, 15pp. doi: 10.1063/1.4792606. |
[24] | S. Woinowsky, The effect of axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36. doi: 10.1115/1.4010053. |
[25] | H. B. Xiao, Asymptotic dynamtics of plate equation with a critical exponent on unbounded domain, Nonlinear Anal., 70 (2009), 1288-1301. doi: 10.1016/j.na.2008.02.012. |
[26] | L. Yang and C. K. Zhong, Global attractor for plate equation with nonlinear damping, Nonlinear Anal., 69 (2008), 3802-3810. doi: 10.1016/j.na.2007.10.016. |
[27] | Z. J. Yang and P. Y. Ding, Longtime dynamics of the Kirchhoff equation with strong damping and critical nonlinearity on $\mathbb{R}^{N}$, J. Math. Anal. Appl., 434 (2016), 1826-1851. doi: 10.1016/j.jmaa.2015.10.013. |
[28] | X. B. Yao and Q. Z. Ma, Global attractors of the extensible plate equations with nonlinear damping and memory, J. Funct. Spaces, 2017 (2017), Art. ID 4896161, 10 pp. doi: 10.1155/2017/4896161. |