[1]
|
D. P. Atherton, Almost six decades in control engineering, IEEE Control Systems Magazine, 34 (2014), 103-110.
|
[2]
|
A. M. Bloch, An Introduction to Aspects of Geometric Control Theory, in Nonholonomic Mechanics and Control (eds. P. Krishnaprasad and R. Murray), vol. 24 of Interdisciplinary Applied Mathematics, Springer, New York, NY, 2015.
|
[3]
|
F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems, vol. 49 of Texts in Applied Mathematics, Springer Verlag, New York-Heidelberg-Berlin, 2004.
|
[4]
|
J. C. Butcher, Runge-Kutta Methods, chapter 3, John Wiley & Sons, Ltd, 2016.
doi: 10.1002/9781119121534.ch3.
|
[5]
|
G. Chen and X. Yu, Chaos Control – Theory and Applications, Lecture Notes in Control and Information Sciences, Springer, 2003.
doi: 10.1007/b79666.
|
[6]
|
L. Cong, J. Mu, Q. Liu, H. Wang, L. Wang, Y. Li and C. Qiao, Thermal noise decoupling of micro-Newton thrust measured in a torsion balance, Symmetry, 13 (2021), 1357.
doi: 10.3390/sym13081357.
|
[7]
|
D. N. Das, R. Sewani, J. Wang and M. K. Tiwari, Synchronized truck and drone routing in package delivery logistics, IEEE Transactions on Intelligent Transportation Systems, 1–11.
|
[8]
|
P. Deng, G. Amirjamshidi and M. Roorda, A vehicle routing problem with movement synchronization of drones, sidewalk robots, or foot-walkers, Transportation Research Procedia, 46 (2020), 29-36.
doi: 10.1016/j.trpro.2020.03.160.
|
[9]
|
R. Dhelika, A. F. Hadi and P. A. Yusuf, Development of a motorized hospital bed with swerve drive modules for holonomic mobility, Applied Sciences, 11 (2021), 11356.
doi: 10.3390/app112311356.
|
[10]
|
S. Fiori, Nonlinear damped oscillators on Riemannian manifolds: Numerical simulation, Communications in Nonlinear Science and Numerical Simulation, 47 (2017), 207–222, URL http://www.sciencedirect.com/science/article/pii/S1007570416304932.
doi: 10.1016/j.cnsns.2016.11.025.
|
[11]
|
S. Fiori, Non-delayed synchronization of non-autonomous dynamical systems on Riemannian manifolds and its applications, Nonlinear Dynamics, 94 (2018), 3077-3100.
doi: 10.1007/s11071-018-4546-x.
|
[12]
|
S. Fiori, Extension of a PID control theory to Lie groups applied to synchronising satellites and drones, IET Control Theory & Applications, 14 (2020), 2628-2642.
doi: 10.1049/iet-cta.2020.0226.
|
[13]
|
S. Fiori, Manifold calculus in system theory and control–Fundamentals and first-order systems, Symmetry, 13 (2021), 2092.
doi: 10.3390/sym13112092.
|
[14]
|
R. Fuentes, G. P. Hicks and J. M. Osborne, The spring paradigm in tracking control of simple mechanical systems, Automatica, 47 (2011), 993-1000.
doi: 10.1016/j.automatica.2011.01.046.
|
[15]
|
S. Gajbhiye and R. N. Banavar, The Euler-Poincaré equations for a spherical robot actuated by a pendulum, IFAC Proceedings Volumes, 45 (2012), 72–77, URL http://www.sciencedirect.com/science/article/pii/S1474667015337459, 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control.
doi: 10.3182/20120829-3-IT-4022.00011.
|
[16]
|
V. Ghaffari and F. Shabaninia, Synchronization of nonlinear dynamical systems using extended Kalman filter and its application in some well-known chaotic systems, Nonlinear Studies, 25 (2018), 273-286.
|
[17]
|
O. Golevych, O. Pyvovar and P. Dumenko, Synchronization of non-linear dynamic systems under the conditions of noise action in the channel, Latvian Journal of Physics and Technical Sciences, 55 (2018), 70-76.
doi: 10.2478/lpts-2018-0023.
|
[18]
|
I. Kovacic and M. J. Brennan, The Duffing Equation: Nonlinear Oscillators and their Behaviour, John Wiley & Sons, Ltd., Chichester, 2011.
doi: 10.1002/9780470977859.
|
[19]
|
Y. Li, L. Li and C. Zhang, AMT starting control as a soft starter for belt conveyors using a data-driven method, Symmetry, 13 (2021), 1808.
doi: 10.3390/sym13101808.
|
[20]
|
M. A. Magdy and T. S. Ng, Regulation and control effort in self-tuning controllers, IEE Proceedings D – Control Theory and Applications, 133 (1986), 289-292.
doi: 10.1049/ip-d.1986.0046.
|
[21]
|
J. Markdahl, Synchronization on Riemannian manifolds: Multiply connected implies multistable, IEEE Transactions on Automatic Control, 66 (2021), 4311-4318.
doi: 10.1109/TAC.2020.3030849.
|
[22]
|
A. Návrat and P. Vašík, On geometric control models of a robotic snake, Note di Matematica, 37 (2017), 120-129.
doi: 10.1285/i15900932v37suppl1p119.
|
[23]
|
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000.
|
[24]
|
K. Ojo, S. Ogunjo and A. Olagundoye, Projective synchronization via active control of identical chaotic oscillators with parametric and external excitation, International Journal of Nonlinear Science, 24 (2017), 76-83.
|
[25]
|
J. M. Osborne and G. P. Hicks, The geodesic spring on the Euclidean sphere with parallel-transport-based damping, Notices of the AMS, 60 (2013), 544-556.
doi: 10.1090/noti997.
|
[26]
|
Y.-s. Reddy and S.-h. Hur, Comparison of optimal control designs for a 5 MW wind turbine, Applied Sciences, 11 (2021), 8774.
doi: 10.3390/app11188774.
|
[27]
|
L. Righetti, Control and Synchronization with Nonlinear Dynamical Systems for an Application to Humanoid Robotics, Ecole Polytechnique Fédérale de Lausanne, 2004, URL https://nyuscholars.nyu.edu/en/publications/control-and-synchronization-with-nonlinear-dynamical-systems-for-.
|
[28]
|
R. W. H. Sargent, Optimal control, Computational and Applied Mathematics, 124 (2000), 361-371.
doi: 10.1016/S0377-0427(00)00418-0.
|
[29]
|
M. Shiino and K. Okumura, Control of attractors in nonlinear dynamical systems using external noise: Effects of noise on synchronization phenomena, Discrete and Continuous Dynamical Systems - Series S, 2013 (2013), 685-694.
doi: 10.3934/proc.2013.2013.685.
|
[30]
|
K. Sreenath, T. Lee and V. Kumar, Geometric control and differential flatness of a quadrotor UAV with a cable-suspended load, in 52nd IEEE Conference on Decision and Control, 2013, 2269–2274.
|
[31]
|
A. Varga, G. Eigner, I. Rudas and J. K. Tar, Experimental and simulation-based performance analysis of a computed torque control (CTC) method running on a double rotor aeromechanical testbed, Electronics, 10 (2021), 1745.
doi: 10.3390/electronics10141745.
|
[32]
|
Y. Wang, Y. Lu and R. Xiao, Application of nonlinear adaptive control in temperature of Chinese solar greenhouses, Electronics, 10 (2021), 1582.
doi: 10.1109/CCDC52312.2021.9601368.
|
[33]
|
C. W. Wu, Synchronization in Complex Networks of Nonlinear Dynamical Systems, World Scientific Publishing Co Pte Ltd, Singapore, 2007.
doi: 10.1142/6570.
|
[34]
|
M. Zarei, A. Kalhor and M. Masouleh, An experimental oscillation damping impedance control for the Novint Falcon haptic device based on the phase trajectory length function concept, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233 (2019), 2663-2672.
doi: 10.1177/0954406218799779.
|
[35]
|
Z. Zhang, J. Cheng and Y. Guo, PD-based optimal ADRC with improved linear extended state observer, Entropy, 23 (2021), Paper No. 888, 15 pp.
doi: 10.3390/e23070888.
|
[36]
|
Z. Zhong, M. Xu, J. Xiao and H. Lu, Design and control of an omnidirectional mobile wall-climbing robot, Applied Sciences, 11 (2021), 11065.
doi: 10.3390/app112211065.
|