This paper is concerned with the factorization method with a single far-field pattern to recover an arbitrary convex polygonal scatterer/source in linear elasticity. The approach also applies to the compressional (resp. shear) part of the far-field pattern excited by a single compressional (resp. shear) plane wave. The one-wave factorization is based on the scattering data for a priori given testing scatterers. It can be regarded as a domain-defined sampling method and does not require forward solvers. We derive the spectral system of the far-field operator for rigid disks and show that, using testing disks, the one-wave factorization method can be justified independently of the classical factorization method.
Citation: |
[1] |
C. Alves and R. Kress, On the far-filed operator in elastic obstacle scattering, IMA J. Appl. Math., 67 (2002), 1-21.
doi: 10.1093/imamat/67.1.1.![]() ![]() ![]() |
[2] |
H. Ammari, E. Bretin, J. Garnier, H. Kang, H. Lee and A. Wahab, Mathematical Methods in Elasticity Imaging, Volume 52, Princeton Series in Applied Mathematics, Princeton University Press, 2015.
doi: 10.1515/9781400866625.![]() ![]() ![]() |
[3] |
T. Arens, Linear sampling methods for 2D inverse elastic wave scattering, Inverse Problems, 17 (2001), 1445-1464.
doi: 10.1088/0266-5611/17/5/314.![]() ![]() ![]() |
[4] |
G. Bao, G. Hu, J. Sun and T. Yin, Direct and inverse elastic scattering from anisotropic media, J. Math Pure Appl, 117 (2018), 263-301.
doi: 10.1016/j.matpur.2018.01.007.![]() ![]() ![]() |
[5] |
E. Blåsten and Y. Lin, Radiating and non-radiating sources in elasticity, Inverse Problems, 35 (2019), 015005, 16 pp.
doi: 10.1088/1361-6420/aae99e.![]() ![]() ![]() |
[6] |
M. Bonnet and A. Constantinescu, Inverse problems in elasticity, Inverse Problems, 21 (2015), 1-50.
doi: 10.1088/0266-5611/21/2/R01.![]() ![]() ![]() |
[7] |
A. Charalambopoulos, D. Gintides and K. Kiriaki, The linear sampling method for non-absorbing penetrable elastic bodies, Inverse Problems, 19 (2003), 549-561.
doi: 10.1088/0266-5611/19/3/305.![]() ![]() ![]() |
[8] |
A. Charalambopoulos, A. Kirsch, K. Anagnostopoulos, D. Gintides and K. Kiriaki, The factorization method in inverse elastic scattering from penetrable bodies, Inverse Problems, 23 (2007), 27-51.
doi: 10.1088/0266-5611/23/1/002.![]() ![]() ![]() |
[9] |
Z. Cheng and G. Huang, Reverse time migration for extended obstacles: Elastic waves (in Chinese), Science China Mathematics, 45 (2015), 1103-1114.
![]() |
[10] |
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4th edition, Springer, Berlin, 2019.
doi: 10.1007/978-3-030-30351-8.![]() ![]() ![]() |
[11] |
S. Das, S. Banerjee and T. Kundu, Elastic wave scattering in a solid half-space with a circular cylindrical hole using the Distributed Point Source Method, Int. J. Solids Struct, 45 (2008), 4498-4508.
![]() |
[12] |
J. Elschner and G. Hu, Uniqueness and factorization method for inverse elastic scattering with a single incoming wave, Inverse Problems, 35 (2019), 094002, 18 pp.
doi: 10.1088/1361-6420/ab20be.![]() ![]() ![]() |
[13] |
D. Gintides and M. Sini, Identification of obstacles using only the scattered P-waves or the scattered S-waves, Inverse Problems Imaging, 6 (2012), 39-55.
doi: 10.3934/ipi.2012.6.39.![]() ![]() ![]() |
[14] |
P. Hahner and G. C. Hsiao, Uniqueness theorems in inverse obstacle scattering of elastic waves, Inverse Problems, 9 (1993), 525-534.
![]() ![]() |
[15] |
G. Hu, A. Kirsch and M. Sini, Some inverse problems arising from elastic scattering by rigid obstacles, Inverse Problems, 29 (2013), 015009, 21 pp.
doi: 10.1088/0266-5611/29/1/015009.![]() ![]() ![]() |
[16] |
M. Ikehata, Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data, Inverse Problems, 15 (1999), 1231-1241.
doi: 10.1088/0266-5611/15/5/308.![]() ![]() ![]() |
[17] |
M. Ikehata and H. Itou, Extracting the support function of a cavity in an isotropic elastic body from a single set of boundary data, Inverse Problems, 25 (2009), 105005, 21 pp.
doi: 10.1088/0266-5611/25/10/105005.![]() ![]() ![]() |
[18] |
X. Ji and X. Liu, Inverse elastic scattering problems with phaseless far field data, Inverse Problems, 35 (2019), 114004, 39 pp.
doi: 10.1088/1361-6420/ab2a35.![]() ![]() ![]() |
[19] |
X. Ji, X. Liu and Y. Xi, Direct sampling methods for inverse elastic scattering problems, Inverse Problems, 34 (2018), 035008, 22 pp.
doi: 10.1088/1361-6420/aaa996.![]() ![]() ![]() |
[20] |
A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford University Press, NewYork, 2008.
![]() ![]() |
[21] |
V. D. Kupradze, et. al., Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, Amsterdam: North-Holland, 1979.
![]() |
[22] |
S. Kusiak, R. Potthast and J. Sylvester, A range test for determining scatterers with unknown physical properties, Inverse Problems, 19 (2003), 533-547.
doi: 10.1088/0266-5611/19/3/304.![]() ![]() ![]() |
[23] |
P. Li, Y. Wang, Z. Wang and Y. Zhao, Inverse obstacle scattering for elastic waves, Inverse Problems, 32 (2016), 115018, 24 pp.
doi: 10.1088/0266-5611/32/11/115018.![]() ![]() ![]() |
[24] |
Y. Lin, G. Nakamura, R. Potthast and H. Wang, Duality between range and no-response tests and its application for inverse problems, Inverse Probl. Imaging, 15 (2021), 367-386.
doi: 10.3934/ipi.2020072.![]() ![]() ![]() |
[25] |
J. Liu, X. Liu and J. Sun, Extended sampling method for inverse elastic scattering problems using one incident wave, SIAM J. Imaging Sci., 12 (2019), 874-892.
doi: 10.1137/19M1237788.![]() ![]() ![]() |
[26] |
J. Liu and J. Sun, Extended sampling method in inverse scattering, Inverse Problems, 34 (2018), 085007, 17 pp.
doi: 10.1088/1361-6420/aaca90.![]() ![]() ![]() |
[27] |
D. R. Luke and R. Potthast, The no response test - a sampling method for inverse scattering problems, SIAM J. Appl. Math., 63 (2003), 1292-1312.
doi: 10.1137/S0036139902406887.![]() ![]() ![]() |
[28] |
G. Ma and G. Hu, Factorization method with one plane wave: From model-driven and data-driven perspectives, Inverse Problems, 38 (2022), 015003, 26 pp.
doi: 10.1088/1361-6420/ac38b5.![]() ![]() ![]() |
[29] |
G. Nakamura and R. Potthast, Inverse Modeling - An Introduction to the Theory and Methods of Inverse Problems and Data Assimilation, IOP Expanding Physics. IOP Publishing, Bristol, 2015.
![]() ![]() |
Illustration of a convex polygonal source term where