doi: 10.3934/dcdsb.2022050
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Factorization method for inverse time-harmonic elastic scattering with a single plane wave

1. 

Department of Applied Mathematics, Beijing Computational Science Research Center, Beijing, 100193, China

2. 

School of Mathematical Sciences and LPMC, Nankai Universtiy, Tianjin, 300071, China

*Corresponding author: Guanghui Hu

Received  September 2021 Revised  January 2022 Early access March 2022

Fund Project: This work is supported by NSFC 12071236 and NSAF U1930402

This paper is concerned with the factorization method with a single far-field pattern to recover an arbitrary convex polygonal scatterer/source in linear elasticity. The approach also applies to the compressional (resp. shear) part of the far-field pattern excited by a single compressional (resp. shear) plane wave. The one-wave factorization is based on the scattering data for a priori given testing scatterers. It can be regarded as a domain-defined sampling method and does not require forward solvers. We derive the spectral system of the far-field operator for rigid disks and show that, using testing disks, the one-wave factorization method can be justified independently of the classical factorization method.

Citation: Guanqiu Ma, Guanghui Hu. Factorization method for inverse time-harmonic elastic scattering with a single plane wave. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2022050
References:
[1]

C. Alves and R. Kress, On the far-filed operator in elastic obstacle scattering, IMA J. Appl. Math., 67 (2002), 1-21.  doi: 10.1093/imamat/67.1.1.

[2]

H. Ammari, E. Bretin, J. Garnier, H. Kang, H. Lee and A. Wahab, Mathematical Methods in Elasticity Imaging, Volume 52, Princeton Series in Applied Mathematics, Princeton University Press, 2015. doi: 10.1515/9781400866625.

[3]

T. Arens, Linear sampling methods for 2D inverse elastic wave scattering, Inverse Problems, 17 (2001), 1445-1464.  doi: 10.1088/0266-5611/17/5/314.

[4]

G. BaoG. HuJ. Sun and T. Yin, Direct and inverse elastic scattering from anisotropic media, J. Math Pure Appl, 117 (2018), 263-301.  doi: 10.1016/j.matpur.2018.01.007.

[5]

E. Blåsten and Y. Lin, Radiating and non-radiating sources in elasticity, Inverse Problems, 35 (2019), 015005, 16 pp. doi: 10.1088/1361-6420/aae99e.

[6]

M. Bonnet and A. Constantinescu, Inverse problems in elasticity, Inverse Problems, 21 (2015), 1-50.  doi: 10.1088/0266-5611/21/2/R01.

[7]

A. CharalambopoulosD. Gintides and K. Kiriaki, The linear sampling method for non-absorbing penetrable elastic bodies, Inverse Problems, 19 (2003), 549-561.  doi: 10.1088/0266-5611/19/3/305.

[8]

A. CharalambopoulosA. KirschK. AnagnostopoulosD. Gintides and K. Kiriaki, The factorization method in inverse elastic scattering from penetrable bodies, Inverse Problems, 23 (2007), 27-51.  doi: 10.1088/0266-5611/23/1/002.

[9]

Z. Cheng and G. Huang, Reverse time migration for extended obstacles: Elastic waves (in Chinese), Science China Mathematics, 45 (2015), 1103-1114. 

[10]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4th edition, Springer, Berlin, 2019. doi: 10.1007/978-3-030-30351-8.

[11]

S. DasS. Banerjee and T. Kundu, Elastic wave scattering in a solid half-space with a circular cylindrical hole using the Distributed Point Source Method, Int. J. Solids Struct, 45 (2008), 4498-4508. 

[12]

J. Elschner and G. Hu, Uniqueness and factorization method for inverse elastic scattering with a single incoming wave, Inverse Problems, 35 (2019), 094002, 18 pp. doi: 10.1088/1361-6420/ab20be.

[13]

D. Gintides and M. Sini, Identification of obstacles using only the scattered P-waves or the scattered S-waves, Inverse Problems Imaging, 6 (2012), 39-55.  doi: 10.3934/ipi.2012.6.39.

[14]

P. Hahner and G. C. Hsiao, Uniqueness theorems in inverse obstacle scattering of elastic waves, Inverse Problems, 9 (1993), 525-534. 

[15]

G. Hu, A. Kirsch and M. Sini, Some inverse problems arising from elastic scattering by rigid obstacles, Inverse Problems, 29 (2013), 015009, 21 pp. doi: 10.1088/0266-5611/29/1/015009.

[16]

M. Ikehata, Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data, Inverse Problems, 15 (1999), 1231-1241.  doi: 10.1088/0266-5611/15/5/308.

[17]

M. Ikehata and H. Itou, Extracting the support function of a cavity in an isotropic elastic body from a single set of boundary data, Inverse Problems, 25 (2009), 105005, 21 pp. doi: 10.1088/0266-5611/25/10/105005.

[18]

X. Ji and X. Liu, Inverse elastic scattering problems with phaseless far field data, Inverse Problems, 35 (2019), 114004, 39 pp. doi: 10.1088/1361-6420/ab2a35.

[19]

X. Ji, X. Liu and Y. Xi, Direct sampling methods for inverse elastic scattering problems, Inverse Problems, 34 (2018), 035008, 22 pp. doi: 10.1088/1361-6420/aaa996.

[20] A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford University Press, NewYork, 2008. 
[21]

V. D. Kupradze, et. al., Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, Amsterdam: North-Holland, 1979.

[22]

S. KusiakR. Potthast and J. Sylvester, A range test for determining scatterers with unknown physical properties, Inverse Problems, 19 (2003), 533-547.  doi: 10.1088/0266-5611/19/3/304.

[23]

P. Li, Y. Wang, Z. Wang and Y. Zhao, Inverse obstacle scattering for elastic waves, Inverse Problems, 32 (2016), 115018, 24 pp. doi: 10.1088/0266-5611/32/11/115018.

[24]

Y. LinG. NakamuraR. Potthast and H. Wang, Duality between range and no-response tests and its application for inverse problems, Inverse Probl. Imaging, 15 (2021), 367-386.  doi: 10.3934/ipi.2020072.

[25]

J. LiuX. Liu and J. Sun, Extended sampling method for inverse elastic scattering problems using one incident wave, SIAM J. Imaging Sci., 12 (2019), 874-892.  doi: 10.1137/19M1237788.

[26]

J. Liu and J. Sun, Extended sampling method in inverse scattering, Inverse Problems, 34 (2018), 085007, 17 pp. doi: 10.1088/1361-6420/aaca90.

[27]

D. R. Luke and R. Potthast, The no response test - a sampling method for inverse scattering problems, SIAM J. Appl. Math., 63 (2003), 1292-1312.  doi: 10.1137/S0036139902406887.

[28]

G. Ma and G. Hu, Factorization method with one plane wave: From model-driven and data-driven perspectives, Inverse Problems, 38 (2022), 015003, 26 pp. doi: 10.1088/1361-6420/ac38b5.

[29]

G. Nakamura and R. Potthast, Inverse Modeling - An Introduction to the Theory and Methods of Inverse Problems and Data Assimilation, IOP Expanding Physics. IOP Publishing, Bristol, 2015.

show all references

References:
[1]

C. Alves and R. Kress, On the far-filed operator in elastic obstacle scattering, IMA J. Appl. Math., 67 (2002), 1-21.  doi: 10.1093/imamat/67.1.1.

[2]

H. Ammari, E. Bretin, J. Garnier, H. Kang, H. Lee and A. Wahab, Mathematical Methods in Elasticity Imaging, Volume 52, Princeton Series in Applied Mathematics, Princeton University Press, 2015. doi: 10.1515/9781400866625.

[3]

T. Arens, Linear sampling methods for 2D inverse elastic wave scattering, Inverse Problems, 17 (2001), 1445-1464.  doi: 10.1088/0266-5611/17/5/314.

[4]

G. BaoG. HuJ. Sun and T. Yin, Direct and inverse elastic scattering from anisotropic media, J. Math Pure Appl, 117 (2018), 263-301.  doi: 10.1016/j.matpur.2018.01.007.

[5]

E. Blåsten and Y. Lin, Radiating and non-radiating sources in elasticity, Inverse Problems, 35 (2019), 015005, 16 pp. doi: 10.1088/1361-6420/aae99e.

[6]

M. Bonnet and A. Constantinescu, Inverse problems in elasticity, Inverse Problems, 21 (2015), 1-50.  doi: 10.1088/0266-5611/21/2/R01.

[7]

A. CharalambopoulosD. Gintides and K. Kiriaki, The linear sampling method for non-absorbing penetrable elastic bodies, Inverse Problems, 19 (2003), 549-561.  doi: 10.1088/0266-5611/19/3/305.

[8]

A. CharalambopoulosA. KirschK. AnagnostopoulosD. Gintides and K. Kiriaki, The factorization method in inverse elastic scattering from penetrable bodies, Inverse Problems, 23 (2007), 27-51.  doi: 10.1088/0266-5611/23/1/002.

[9]

Z. Cheng and G. Huang, Reverse time migration for extended obstacles: Elastic waves (in Chinese), Science China Mathematics, 45 (2015), 1103-1114. 

[10]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4th edition, Springer, Berlin, 2019. doi: 10.1007/978-3-030-30351-8.

[11]

S. DasS. Banerjee and T. Kundu, Elastic wave scattering in a solid half-space with a circular cylindrical hole using the Distributed Point Source Method, Int. J. Solids Struct, 45 (2008), 4498-4508. 

[12]

J. Elschner and G. Hu, Uniqueness and factorization method for inverse elastic scattering with a single incoming wave, Inverse Problems, 35 (2019), 094002, 18 pp. doi: 10.1088/1361-6420/ab20be.

[13]

D. Gintides and M. Sini, Identification of obstacles using only the scattered P-waves or the scattered S-waves, Inverse Problems Imaging, 6 (2012), 39-55.  doi: 10.3934/ipi.2012.6.39.

[14]

P. Hahner and G. C. Hsiao, Uniqueness theorems in inverse obstacle scattering of elastic waves, Inverse Problems, 9 (1993), 525-534. 

[15]

G. Hu, A. Kirsch and M. Sini, Some inverse problems arising from elastic scattering by rigid obstacles, Inverse Problems, 29 (2013), 015009, 21 pp. doi: 10.1088/0266-5611/29/1/015009.

[16]

M. Ikehata, Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data, Inverse Problems, 15 (1999), 1231-1241.  doi: 10.1088/0266-5611/15/5/308.

[17]

M. Ikehata and H. Itou, Extracting the support function of a cavity in an isotropic elastic body from a single set of boundary data, Inverse Problems, 25 (2009), 105005, 21 pp. doi: 10.1088/0266-5611/25/10/105005.

[18]

X. Ji and X. Liu, Inverse elastic scattering problems with phaseless far field data, Inverse Problems, 35 (2019), 114004, 39 pp. doi: 10.1088/1361-6420/ab2a35.

[19]

X. Ji, X. Liu and Y. Xi, Direct sampling methods for inverse elastic scattering problems, Inverse Problems, 34 (2018), 035008, 22 pp. doi: 10.1088/1361-6420/aaa996.

[20] A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford University Press, NewYork, 2008. 
[21]

V. D. Kupradze, et. al., Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, Amsterdam: North-Holland, 1979.

[22]

S. KusiakR. Potthast and J. Sylvester, A range test for determining scatterers with unknown physical properties, Inverse Problems, 19 (2003), 533-547.  doi: 10.1088/0266-5611/19/3/304.

[23]

P. Li, Y. Wang, Z. Wang and Y. Zhao, Inverse obstacle scattering for elastic waves, Inverse Problems, 32 (2016), 115018, 24 pp. doi: 10.1088/0266-5611/32/11/115018.

[24]

Y. LinG. NakamuraR. Potthast and H. Wang, Duality between range and no-response tests and its application for inverse problems, Inverse Probl. Imaging, 15 (2021), 367-386.  doi: 10.3934/ipi.2020072.

[25]

J. LiuX. Liu and J. Sun, Extended sampling method for inverse elastic scattering problems using one incident wave, SIAM J. Imaging Sci., 12 (2019), 874-892.  doi: 10.1137/19M1237788.

[26]

J. Liu and J. Sun, Extended sampling method in inverse scattering, Inverse Problems, 34 (2018), 085007, 17 pp. doi: 10.1088/1361-6420/aaca90.

[27]

D. R. Luke and R. Potthast, The no response test - a sampling method for inverse scattering problems, SIAM J. Appl. Math., 63 (2003), 1292-1312.  doi: 10.1137/S0036139902406887.

[28]

G. Ma and G. Hu, Factorization method with one plane wave: From model-driven and data-driven perspectives, Inverse Problems, 38 (2022), 015003, 26 pp. doi: 10.1088/1361-6420/ac38b5.

[29]

G. Nakamura and R. Potthast, Inverse Modeling - An Introduction to the Theory and Methods of Inverse Problems and Data Assimilation, IOP Expanding Physics. IOP Publishing, Bristol, 2015.

Figure 4.1.  Illustration of a convex polygonal source term where $ O $ is corner point of $ D $
[1]

Huai-An Diao, Peijun Li, Xiaokai Yuan. Inverse elastic surface scattering with far-field data. Inverse Problems and Imaging, 2019, 13 (4) : 721-744. doi: 10.3934/ipi.2019033

[2]

Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems and Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757

[3]

Jun Guo, Qinghua Wu, Guozheng Yan. The factorization method for cracks in elastic scattering. Inverse Problems and Imaging, 2018, 12 (2) : 349-371. doi: 10.3934/ipi.2018016

[4]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems and Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[5]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems and Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[6]

Tielei Zhu, Jiaqing Yang, Bo Zhang. Recovering a bounded elastic body by electromagnetic far-field measurements. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022012

[7]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems and Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[8]

Jianliang Li, Jiaqing Yang, Bo Zhang. A linear sampling method for inverse acoustic scattering by a locally rough interface. Inverse Problems and Imaging, 2021, 15 (5) : 1247-1267. doi: 10.3934/ipi.2021036

[9]

Peijun Li, Xiaokai Yuan. Inverse obstacle scattering for elastic waves in three dimensions. Inverse Problems and Imaging, 2019, 13 (3) : 545-573. doi: 10.3934/ipi.2019026

[10]

Tielei Zhu, Jiaqing Yang. A non-iterative sampling method for inverse elastic wave scattering by rough surfaces. Inverse Problems and Imaging, 2022, 16 (4) : 997-1017. doi: 10.3934/ipi.2022009

[11]

Masaru Ikehata. The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain. Inverse Problems and Imaging, 2016, 10 (1) : 131-163. doi: 10.3934/ipi.2016.10.131

[12]

Xiaodong Liu. The factorization method for scatterers with different physical properties. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 563-577. doi: 10.3934/dcdss.2015.8.563

[13]

Houssem Haddar, Alexander Konschin. Factorization method for imaging a local perturbation in inhomogeneous periodic layers from far field measurements. Inverse Problems and Imaging, 2020, 14 (1) : 133-152. doi: 10.3934/ipi.2019067

[14]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems and Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[15]

Fang Zeng. Extended sampling method for interior inverse scattering problems. Inverse Problems and Imaging, 2020, 14 (4) : 719-731. doi: 10.3934/ipi.2020033

[16]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems and Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[17]

Johannes Elschner, Guanghui Hu, Masahiro Yamamoto. Uniqueness in inverse elastic scattering from unbounded rigid surfaces of rectangular type. Inverse Problems and Imaging, 2015, 9 (1) : 127-141. doi: 10.3934/ipi.2015.9.127

[18]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems and Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[19]

Qi Wang, Yanren Hou. Determining an obstacle by far-field data measured at a few spots. Inverse Problems and Imaging, 2015, 9 (2) : 591-600. doi: 10.3934/ipi.2015.9.591

[20]

Deyue Zhang, Yukun Guo, Fenglin Sun, Hongyu Liu. Unique determinations in inverse scattering problems with phaseless near-field measurements. Inverse Problems and Imaging, 2020, 14 (3) : 569-582. doi: 10.3934/ipi.2020026

2021 Impact Factor: 1.497

Article outline

Figures and Tables

[Back to Top]