In this paper, we propose a multi-domain Chebyshev collocation method for the nonlinear fractional pantograph differential equations. We analyze the existence and uniqueness, and present the $ hp $-version error bounds under the $ L^2 $-norm and the $ L^\infty $-norm. Numerical experiments are included to illustrate the theoretical results.
Citation: |
[1] | K. Balachandran, S. Kiruthika and J. J. Trujillo, Existence of solutions of nonlinear fractional pantograph equations, Acta Math. Sci., 33 (2013), 712-720. doi: 10.1016/S0252-9602(13)60032-6. |
[2] | A. H. Bhrawy, A. A. Al-Zahrani, Y. A. Alhamed and D. Baleanu, A new generalized Laguerre-Gauss collocation scheme for numerical solution of generalized fractional pantograph equations, Rom. J. Phys., 59 (2014), 646-657. |
[3] | H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equations, Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511543234. |
[4] | S. Chen, J. Shen and L. Wang, Generalized Jacobi functions and their applications to fractional differential equations, Math. Comput., 85 (2016), 1603-1638. doi: 10.1090/mcom3035. |
[5] | K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Lect. Notes Math., Springer, Berlin, 2004. doi: 10.1007/978-3-642-14574-2. |
[6] | S. Esmaeili and M. Shamsi, A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 3646-3654. doi: 10.1016/j.cnsns.2010.12.008. |
[7] | R. M. Hafez and Y. H. Youssri, Legendre-collocation spectral solver for variable-order fractional functional differential equations, Comput. Methods Differ. Equ., 8 (2020), 99-110. doi: 10.22034/cmde.2019.9465. |
[8] | A. A. Keller, Contribution of the delay differential equations to the complex economic macrodynamics, Wseas Trans. Syst., 9 (2010), 358-371. |
[9] | N. Kopteva and M. Stynes, An efficient collocation method for a Caputo two-point boundary value problem, BIT, 55 (2015), 1105-1123. doi: 10.1007/s10543-014-0539-4. |
[10] | V. Lakshmikantham, Theory of fractional functional differential equations, Nonlinear Anal., 69 (2008), 3337-3343. doi: 10.1016/j.na.2007.09.025. |
[11] | C. Li, F. Zeng and F. Liu, Spectral approximations to the fractional integral and derivative, Fract. Calc. Appl. Anal., 15 (2012), 383-406. doi: 10.2478/s13540-012-0028-x. |
[12] | D. Li and C. Zhang, Long time numerical behaviors of fractional pantograph equations, Math. Comput. Simulation, 172 (2020), 244-257. doi: 10.1016/j.matcom.2019.12.004. |
[13] | W. Liu, L. Wang and S. Xiang, A new spectral method using nonstandard singular basis functions for time-fractional differential equations, Commun. Appl. Math. Comput., 1 (2019), 207-230. doi: 10.1007/s42967-019-00012-1. |
[14] | P. Mokhtary and F. Ghoreishi, The $L^2$-convergence of the Legendre spectral tau matrix formulation for nonlinear fractional integro-differential equations, Numer. Algor., 58 (2011), 475-496. doi: 10.1007/s11075-011-9465-6. |
[15] | S. Nemati, P. Lima and S. Sedaghat, An effective numerical method for solving fractional pantograph differential equations using modification of hat functions, Appl. Num. Math., 131 (2018), 174-189. doi: 10.1016/j.apnum.2018.05.005. |
[16] | P. Rahimkhani, Y. Ordokhania and E. Babolian, Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet, J. Comput. Appl. Math., 309 (2017), 493-510. doi: 10.1016/j.cam.2016.06.005. |
[17] | L. Shi, X. Ding, Z. Chen and Q. Ma, A new class of operational matrices method for solving fractional neutral pantograph differential equations, Adv. Diff. Eq., 2018 (2018), 1-17. doi: 10.1186/s13662-018-1536-8. |
[18] | G. Szegö, Orthogonal Polynomials, 4th edition, AMS Coll. Publ. 23, Providence, 1975. |
[19] | C. Wang, Z. Wang and H. Jia, An hp-version spectral collocation method for nonlinear Volterra integro-differential equation with weakly singular kernels, J. Sci. Comput., 72 (2017), 647-678. doi: 10.1007/s10915-017-0373-3. |
[20] | C. Wang, Z. Wang and L. Wang, A spectral collocation method for nonlinear fractional boundary value problems with a Caputo derivative, J. Sci. Comput., 76 (2018), 166-188. doi: 10.1007/s10915-017-0616-3. |
[21] | L. Wang, Y. Chen, D. Liu and D. Boutat, Numerical algorithm to solve generalized fractional pantograph equations with variable coefficients based on shifted Chebyshev polynomials, Int. J. Comput. Math., 96 (2019), 2487-2510. doi: 10.1080/00207160.2019.1573992. |
[22] | Z. Wang, Y. Guo and L. Yi, An $hp$-version Legendre-Jacobi spectral collocation method for Volterra integro-differential equations with smooth and weakly singular kernels, Math. Comp., 86 (2017), 2285-2324. doi: 10.1090/mcom/3183. |
[23] | Z. Wang and C. Sheng, An $hp$-spectral collocation method for nonlinear Volterra integral equations with vanishing variable delays, Math. Comp., 85 (2016), 635-666. doi: 10.1090/mcom/3023. |
[24] | Z. Wang, C. Sheng, H. Jia and D. Li, A Chebyshev spectral collocation method for nonlinear Volterra integral equations with vanishing delays, East Asian J. Appl. Math., 8 (2018), 233-260. doi: 10.4208/eajam.130416.071217a. |
[25] | J. Wu, Theory and Applications of Partial Functional-Differential Equations, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4050-1. |
[26] | C. Yang and J. Hou, Jacobi spectral approximation for boundary value problems of nonlinear fractional pantograph differential equations, Numer. Algorithms, 86 (2021), 1089-1108. doi: 10.1007/s11075-020-00924-7. |
[27] | Y. Yang and Y. Huang, Spectral-collocation methods for fractional pantograph delay-integrodifferential equations, Adv. Math. Phys., 2013 (2013), Art. ID 821327, 14 pp. doi: 10.1155/2013/821327. |
A simple mesh
The errors of Example 1
The errors of Example 2
The errors of Example 3