• Previous Article
    Existence of complete Lyapunov functions with prescribed orbital derivative
  • DCDS-B Home
  • This Issue
  • Next Article
    A novel numerical method based on a high order polynomial approximation of the fourth order Steklov equation and its eigenvalue problems
doi: 10.3934/dcdsb.2022054
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Limiting behavior of invariant measures of highly nonlinear stochastic retarded lattice systems

School of Mathematics, Southwest Jiaotong University, Chengdu, Sichuan 610031, China

* Corresponding author

Received  September 2021 Revised  January 2022 Early access March 2022

Fund Project: This work was supported by NSFC (11971394 and 11871049), Sichuan Science and Technology Program (2019YJ0215) and Fundamental Research Funds for the Central Universities (2682021ZTPY057)

This paper deals with the limiting behavior of invariant measures of the highly nonlinear stochastic retarded lattice systems. Although invariant measures of stochastic retarded lattice system has been studied recently, there is so far no result of invariant measure of stochastic retarded lattice systems with highly nonlinear drift or diffusion terms. We first show the existence of invariant measures of the systems. We then prove that any limit point of a tight sequence of invariant measures of the stochastic retarded lattice systems must be an invariant measure of the corresponding limiting system as the intensity of noise converges or the time-delay approaches zero.

Citation: Yusen Lin, Dingshi Li. Limiting behavior of invariant measures of highly nonlinear stochastic retarded lattice systems. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2022054
References:
[1]

P. W. BatesH. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6 (2006), 1-21.  doi: 10.1142/S0219493706001621.

[2]

P. W. BatesK. Lu and B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Physica D, 289 (2014), 32-50.  doi: 10.1016/j.physd.2014.08.004.

[3]

H. BessaihM. Garrido-AtienzaX. Han and B. Schmalfuss, Stochastic lattice dynamical systems with fractional noise, SIAM J. Math. Anal., 49 (2017), 1495-1518.  doi: 10.1137/16M1085504.

[4]

T. CaraballoX. HanB. Schmalfuss and J. Valero, Random attractors for stochastic lattice dynamical systems with infinite multiplicative white noise, Nonlinear Analysis, 130 (2016), 255-278.  doi: 10.1016/j.na.2015.09.025.

[5]

T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise, Front. Math. China, 3 (2008), 317-335.  doi: 10.1007/s11464-008-0028-7.

[6]

T. CaraballoF. Morillas and J. Valero, Random attractors for stochastic lattice systems with non-Lipschitz nonlinearity, J. Difference Equ. Appl., 17 (2011), 161-184.  doi: 10.1080/10236198.2010.549010.

[7]

T. CaraballoF. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearity, J. Differential Equations, 253 (2012), 667-693.  doi: 10.1016/j.jde.2012.03.020.

[8]

Z. Chen, X. Li and B. Wang, Invariant measures of stochastic delay lattice systems, Discrete Contin., Dyn. Syst. Ser. B, 26 (2021), 3235–3269. doi: 10.3934/dcdsb.2020226.

[9]

X. HanW. Shen and S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266.  doi: 10.1016/j.jde.2010.10.018.

[10]

D. LiB. Wang and X. Wang, Periodic measures of stochastic delay lattice systems, J. Differential Equations, 272 (2021), 74-104.  doi: 10.1016/j.jde.2020.09.034.

[11]

D. Li, B. Wang and X. Wang, Limiting behavior of invariant measures of stochastic delay lattice systems, J. Dynam. Differential Equations, 2021. doi: 10.1007/s10884-021-10011-7.

[12]

X. Mao, Stochastic Differential Equations and Applications, Second edition. Horwood Publishing Limited, Chichester, 2008. doi: 10.1533/9780857099402.

[13]

M. SuiY. WangX. Han and P. E. Kloeden, Random recurrent neural networks with delays, J. Differential Equations, 269 (2020), 8597-8639.  doi: 10.1016/j.jde.2020.06.008.

[14]

B. Wang, Dynamics of stochastic reaction-diffusion lattice systems driven by nonlinear noise, J. Math. Anal. Appl., 477 (2019), 104-132.  doi: 10.1016/j.jmaa.2019.04.015.

[15]

X. WangS. Li and D. Xu, Random attractors for second-order stochastic lattice dynamical systems, Nonlinear Anal., 72 (2010), 483-494.  doi: 10.1016/j.na.2009.06.094.

[16]

X. WangK. Lu and B. Wang, Exponential stability of non-autonomous stochastic delay lattice systems driven by a multiplicative white noise, J. Dynam. Differential Equations, 28 (2016), 1309-1335.  doi: 10.1007/s10884-015-9448-8.

[17]

R. Wang and B. Wang, Random dynamics of $p$-Laplacian lattice systems driven by infinite-dimensional nonlinear noise, Stochastic Process. Appl., 130 (2020), 7431-7462.  doi: 10.1016/j.spa.2020.08.002.

[18]

R. Wang and B. Wang, Asymptotic behavior of stochastic Schr$\ddot{o}$dinger lattice systems driven by nonlinear noise, Stoch. Anal. Appl., 38 (2020), 213-237.  doi: 10.1080/07362994.2019.1679646.

[19]

Z. Wang and S. Zhou, Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice systems with random coupled coefficients, Commun. Pure Appl. Anal., 15 (2016), 2221-2245.  doi: 10.3934/cpaa.2016035.

[20]

W. Yan, Y. Li and S. Ji, Random attractors for first order stochastic retarded lattice dynamical systems, J. Math. Phys., 51 (2010), 032702, 17pp. doi: 10.1063/1.3319566.

[21]

C. Zhang and L. Zhao, The attractors for 2nd-order stochastic delay lattice systems, Discrete Contin. Dyn. Syst., 37 (2017), 575-590.  doi: 10.3934/dcds.2017023.

show all references

References:
[1]

P. W. BatesH. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6 (2006), 1-21.  doi: 10.1142/S0219493706001621.

[2]

P. W. BatesK. Lu and B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Physica D, 289 (2014), 32-50.  doi: 10.1016/j.physd.2014.08.004.

[3]

H. BessaihM. Garrido-AtienzaX. Han and B. Schmalfuss, Stochastic lattice dynamical systems with fractional noise, SIAM J. Math. Anal., 49 (2017), 1495-1518.  doi: 10.1137/16M1085504.

[4]

T. CaraballoX. HanB. Schmalfuss and J. Valero, Random attractors for stochastic lattice dynamical systems with infinite multiplicative white noise, Nonlinear Analysis, 130 (2016), 255-278.  doi: 10.1016/j.na.2015.09.025.

[5]

T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise, Front. Math. China, 3 (2008), 317-335.  doi: 10.1007/s11464-008-0028-7.

[6]

T. CaraballoF. Morillas and J. Valero, Random attractors for stochastic lattice systems with non-Lipschitz nonlinearity, J. Difference Equ. Appl., 17 (2011), 161-184.  doi: 10.1080/10236198.2010.549010.

[7]

T. CaraballoF. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearity, J. Differential Equations, 253 (2012), 667-693.  doi: 10.1016/j.jde.2012.03.020.

[8]

Z. Chen, X. Li and B. Wang, Invariant measures of stochastic delay lattice systems, Discrete Contin., Dyn. Syst. Ser. B, 26 (2021), 3235–3269. doi: 10.3934/dcdsb.2020226.

[9]

X. HanW. Shen and S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266.  doi: 10.1016/j.jde.2010.10.018.

[10]

D. LiB. Wang and X. Wang, Periodic measures of stochastic delay lattice systems, J. Differential Equations, 272 (2021), 74-104.  doi: 10.1016/j.jde.2020.09.034.

[11]

D. Li, B. Wang and X. Wang, Limiting behavior of invariant measures of stochastic delay lattice systems, J. Dynam. Differential Equations, 2021. doi: 10.1007/s10884-021-10011-7.

[12]

X. Mao, Stochastic Differential Equations and Applications, Second edition. Horwood Publishing Limited, Chichester, 2008. doi: 10.1533/9780857099402.

[13]

M. SuiY. WangX. Han and P. E. Kloeden, Random recurrent neural networks with delays, J. Differential Equations, 269 (2020), 8597-8639.  doi: 10.1016/j.jde.2020.06.008.

[14]

B. Wang, Dynamics of stochastic reaction-diffusion lattice systems driven by nonlinear noise, J. Math. Anal. Appl., 477 (2019), 104-132.  doi: 10.1016/j.jmaa.2019.04.015.

[15]

X. WangS. Li and D. Xu, Random attractors for second-order stochastic lattice dynamical systems, Nonlinear Anal., 72 (2010), 483-494.  doi: 10.1016/j.na.2009.06.094.

[16]

X. WangK. Lu and B. Wang, Exponential stability of non-autonomous stochastic delay lattice systems driven by a multiplicative white noise, J. Dynam. Differential Equations, 28 (2016), 1309-1335.  doi: 10.1007/s10884-015-9448-8.

[17]

R. Wang and B. Wang, Random dynamics of $p$-Laplacian lattice systems driven by infinite-dimensional nonlinear noise, Stochastic Process. Appl., 130 (2020), 7431-7462.  doi: 10.1016/j.spa.2020.08.002.

[18]

R. Wang and B. Wang, Asymptotic behavior of stochastic Schr$\ddot{o}$dinger lattice systems driven by nonlinear noise, Stoch. Anal. Appl., 38 (2020), 213-237.  doi: 10.1080/07362994.2019.1679646.

[19]

Z. Wang and S. Zhou, Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice systems with random coupled coefficients, Commun. Pure Appl. Anal., 15 (2016), 2221-2245.  doi: 10.3934/cpaa.2016035.

[20]

W. Yan, Y. Li and S. Ji, Random attractors for first order stochastic retarded lattice dynamical systems, J. Math. Phys., 51 (2010), 032702, 17pp. doi: 10.1063/1.3319566.

[21]

C. Zhang and L. Zhao, The attractors for 2nd-order stochastic delay lattice systems, Discrete Contin. Dyn. Syst., 37 (2017), 575-590.  doi: 10.3934/dcds.2017023.

[1]

Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085

[2]

Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140

[3]

Giuseppina di Blasio, Filomena Feo, Maria Rosaria Posteraro. Existence results for nonlinear elliptic equations related to Gauss measure in a limit case. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1497-1506. doi: 10.3934/cpaa.2008.7.1497

[4]

Andriy Stanzhytsky, Oleksandr Misiats, Oleksandr Stanzhytskyi. Invariant measure for neutral stochastic functional differential equations with non-Lipschitz coefficients. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022005

[5]

Chuchu Chen, Jialin Hong, Yulan Lu. Stochastic differential equation with piecewise continuous arguments: Markov property, invariant measure and numerical approximation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022098

[6]

Jonathan C. Mattingly, Etienne Pardoux. Invariant measure selection by noise. An example. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4223-4257. doi: 10.3934/dcds.2014.34.4223

[7]

Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118.

[8]

Ugo Bessi. The stochastic value function in metric measure spaces. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1819-1839. doi: 10.3934/dcds.2017076

[9]

Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226

[10]

Simon Lloyd, Edson Vargas. Critical covering maps without absolutely continuous invariant probability measure. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2393-2412. doi: 10.3934/dcds.2019101

[11]

Paola Mannucci, Claudio Marchi, Nicoletta Tchou. Asymptotic behaviour for operators of Grushin type: Invariant measure and singular perturbations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (1) : 119-128. doi: 10.3934/dcdss.2019008

[12]

Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123

[13]

Ying-Cheng Lai, Kwangho Park. Noise-sensitive measure for stochastic resonance in biological oscillators. Mathematical Biosciences & Engineering, 2006, 3 (4) : 583-602. doi: 10.3934/mbe.2006.3.583

[14]

Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052

[15]

Tian Zhang, Huabin Chen, Chenggui Yuan, Tomás Caraballo. On the asymptotic behavior of highly nonlinear hybrid stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5355-5375. doi: 10.3934/dcdsb.2019062

[16]

José Antonio Carrillo, Marco Di Francesco, Antonio Esposito, Simone Fagioli, Markus Schmidtchen. Measure solutions to a system of continuity equations driven by Newtonian nonlocal interactions. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 1191-1231. doi: 10.3934/dcds.2020075

[17]

Jawad Al-Khal, Henk Bruin, Michael Jakobson. New examples of S-unimodal maps with a sigma-finite absolutely continuous invariant measure. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 35-61. doi: 10.3934/dcds.2008.22.35

[18]

Boris Kalinin, Anatole Katok, Federico Rodriguez Hertz. Errata to "Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori" and "Uniqueness of large invariant measures for $\Zk$ actions with Cartan homotopy data". Journal of Modern Dynamics, 2010, 4 (1) : 207-209. doi: 10.3934/jmd.2010.4.207

[19]

Richard Sharp. Conformal Markov systems, Patterson-Sullivan measure on limit sets and spectral triples. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2711-2727. doi: 10.3934/dcds.2016.36.2711

[20]

Yunjuan Jin, Aifang Qu, Hairong Yuan. Radon measure solutions for steady compressible hypersonic-limit Euler flows passing cylindrically symmetric conical bodies. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2665-2685. doi: 10.3934/cpaa.2021048

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (129)
  • HTML views (71)
  • Cited by (0)

Other articles
by authors

[Back to Top]