• Previous Article
    The wave interactions of an improved Aw-Rascle-Zhang model with a non-genuinely nonlinear field
  • DCDS-B Home
  • This Issue
  • Next Article
    Confining integro-differential equations originating from evolutionary biology: Ground states and long time dynamics
doi: 10.3934/dcdsb.2022056
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Phase portraits of the Selkov model in the Poincaré disc

1. 

Departament de Matemàtiques, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

2. 

Department of Mathematical Sciences, Isfahan University of Technology, 84156-83111, Isfahan, Iran

*Corresponding author: Jaume Llibre

Received  November 2021 Early access March 2022

Fund Project: This work was partially supported by the Agencia Estatal de Investigación grants PID2019-104658GB-I00, and the H2020 European Research Council grant MSCA-RISE-2017-777911

In this paper we classify the phase portraits in the Poincaré disc of the Selkov model for the glycolysis process
$ \begin{equation*} \dot{x}\, = \, -x+a y+x^2 y, \quad \dot{y} \, = \, b-a y-x^2 y, \end{equation*} $
in function of its parameters
$ a, b \in \mathbb{R} $
. In particular we determine the regions in the parameter plane with biological meaning, i.e. with
$ a $
,
$ b $
,
$ x $
and
$ y $
positive.
Citation: Jaume Llibre, Arefeh Nabavi. Phase portraits of the Selkov model in the Poincaré disc. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2022056
References:
[1]

K. S. Al Noufaey and T. R. Marchant, Semi-analytical solutions for the reversible Selkov model withfeedback delay, Appl. Math. Comput., 232 (2014), 49–59. doi: 10.1016/j.amc.2014.01.059.

[2]

M. J. Álvarez, A. Ferragut and X. Jarque, A survey on the blow up technique, Int. J. Bifurc Chaos., 21 (2011), 3103–3118. doi: 10.1142/S0218127411030416.

[3]

J. C. Artés, J. Llibre and C. Valls, Dynamics of the Higgings–Selkov and Selkov systems, Chaos, Solitons and Fractals, 114 (2018), 145–150. doi: 10.1016/j.chaos.2018.07.007.

[4]

P. Brechmann and A. D. Rendall, Dynamics of the Selkov oscillator, Math. Biosci., 306 (2018), 152–159. doi: 10.1016/j.mbs.2018.09.012.

[5]

H. Chen and Y. Tang, Proof of Artés-Llibre-Valls's conjectures for the Higgins-Selkov systems, J. Differential Equations, 266 (2019), 7638–7657. doi: 10.1016/j.jde.2018.12.011.

[6]

Q. Din, Bifurcation analysis and chaos control in discrete-time glycolysis models, J. Math. Chem., 56 (2018), 904–931. doi: 10.1007/s10910-017-0839-4.

[7]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer Verlag, New York, 2006.

[8]

Y. Kuznetsov, Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, Vol. 112, Springer-Verlag, New York, 2004. doi: 10.1007/978-1-4757-3978-7.

[9]

L. Markus, Global structure of ordinary differential equations in the plane, Trans. Amer. Math. Soc., 76 (1954), 127–148. doi: 10.1090/S0002-9947-1954-0060657-0.

[10]

D. A. Neumann, Classification of continuous flows on 2-manifolds, Proc. Amer. Math. Soc., 48 (1975), 73–81. doi: 10.1090/S0002-9939-1975-0356138-6.

[11]

M. M. Peixoto, Proccedings of a simposium held at the university of Bahia, Acad. Press, New York, 1973,349–420.

[12]

P. C. Rech, Organization of the periodicity in the parameter-space of a glycolysis discrete-time mathematical model, J. Math. Chem., 57 (2019), 632–637. doi: 10.1007/s10910-018-0976-4.

[13]

E. Selkov, Model of glycolytic oscillations, Eur. J. Biochem., 4 (1968), 79–86.

[14]

S. H. Strogatz, Nonlinear Dynamics and Chaos, Mathematics & Statistics, 2019. doi: 10.1201/9780429492563.

show all references

References:
[1]

K. S. Al Noufaey and T. R. Marchant, Semi-analytical solutions for the reversible Selkov model withfeedback delay, Appl. Math. Comput., 232 (2014), 49–59. doi: 10.1016/j.amc.2014.01.059.

[2]

M. J. Álvarez, A. Ferragut and X. Jarque, A survey on the blow up technique, Int. J. Bifurc Chaos., 21 (2011), 3103–3118. doi: 10.1142/S0218127411030416.

[3]

J. C. Artés, J. Llibre and C. Valls, Dynamics of the Higgings–Selkov and Selkov systems, Chaos, Solitons and Fractals, 114 (2018), 145–150. doi: 10.1016/j.chaos.2018.07.007.

[4]

P. Brechmann and A. D. Rendall, Dynamics of the Selkov oscillator, Math. Biosci., 306 (2018), 152–159. doi: 10.1016/j.mbs.2018.09.012.

[5]

H. Chen and Y. Tang, Proof of Artés-Llibre-Valls's conjectures for the Higgins-Selkov systems, J. Differential Equations, 266 (2019), 7638–7657. doi: 10.1016/j.jde.2018.12.011.

[6]

Q. Din, Bifurcation analysis and chaos control in discrete-time glycolysis models, J. Math. Chem., 56 (2018), 904–931. doi: 10.1007/s10910-017-0839-4.

[7]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer Verlag, New York, 2006.

[8]

Y. Kuznetsov, Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, Vol. 112, Springer-Verlag, New York, 2004. doi: 10.1007/978-1-4757-3978-7.

[9]

L. Markus, Global structure of ordinary differential equations in the plane, Trans. Amer. Math. Soc., 76 (1954), 127–148. doi: 10.1090/S0002-9947-1954-0060657-0.

[10]

D. A. Neumann, Classification of continuous flows on 2-manifolds, Proc. Amer. Math. Soc., 48 (1975), 73–81. doi: 10.1090/S0002-9939-1975-0356138-6.

[11]

M. M. Peixoto, Proccedings of a simposium held at the university of Bahia, Acad. Press, New York, 1973,349–420.

[12]

P. C. Rech, Organization of the periodicity in the parameter-space of a glycolysis discrete-time mathematical model, J. Math. Chem., 57 (2019), 632–637. doi: 10.1007/s10910-018-0976-4.

[13]

E. Selkov, Model of glycolytic oscillations, Eur. J. Biochem., 4 (1968), 79–86.

[14]

S. H. Strogatz, Nonlinear Dynamics and Chaos, Mathematics & Statistics, 2019. doi: 10.1201/9780429492563.

Figure 1.  Phase portraits of system (1) with $ a\in \mathbb{R} $ and $ b\ge 0 $ in the Poincaré disc. The shaded areas correspond to the initial conditions of the orbits having a finite final evolution, so these are the initial conditions with biological meaning. In the phase portraits $ E $ and $ I $ the final behaviour is a stable limit cycle, while in the phase portraits $ F $, $ G $ and $ H $ the final behaviour is a singular point
Figure 2.  The regions $ R_1 $ and $ R_2 $ where the differential system (1) has limit cycles computed numerically
Figure 3.  Regions and curves separating the different local phase portraits of the finite singular point
Figure 4.  Blowing down of the origin of the local chart $ U_2 $ for $ a \ge 0 $
Figure 5.  Blowing down of the origin of the local chart $ U_2 $ for $ a<-b^2 $, $ b \ge 0 $
Figure 6.  Blowing down of the origin of the local chart $ U_2 $ for $ a = -b^2 $, $ b \neq 0 $
Figure 7.  Blowing down of the origin of the local chart $ U_2 $ for $ a \in (-b^2, 0) $
Figure 8.  The regions $ I $, $ II $, $ III $, the point $ (b, a) = (0, 0) $, and the curve $ \gamma:\lbrace a = -b^2, b\neq 0\rbrace $ separating the different local phase portraits at the origin of the local chart $ U_2 $ in the half plane $ \{(b, a): b\ge 0, a\in {\mathbb{R}}\} $
Figure 9.  Bifurcation diagram
Figure 10.  Local phase portraits at the finite and infinite singular points in the Poincaré disc
Figure 11.  The phase portrait of system (4)
Figure 12.  The possible global phase portraits taken from the local phase portrait in the region $ R_{12} $
Figure 13.  The direction of vector field for the values of the parameters located in the region $ R_{12} $. The red and blue curves are respectively the graphs of $ y = b/(a+x^2) $ and $ y = x/(a+x^2) $
Figure 14.  The possible global phase portraits taken from the local phase portrait (Figure 10), for the values of parameters on $ P_3 $, $ P_4 $, $ L_4 $, $ L_6 $, $ L_8 $ and $ R_4 $
Figure 15.  The possible global phase portraits taken from the local phase portrait in the region $ R_6 $ (Figure 10)
Figure 16.  The direction of vector field for the values of parameters located in the region $ R_6 $. The red and blue curves are respectively the graphs of $ y = b/(a+x^2) $ and $ y = x/(a+x^2) $
Table 1.  We provide the local phase portrait of the finite singular point when the parameters of the differential system (1) are on the curves or in the regions of Figure 3
Curve Region finite singular point
$ \alpha_1 $, $ \alpha_2 $ (1), (2) stable node
$ \beta $ ($ b\le b_2 $) (3) stable focus
$ \beta $ ($ b>b_2 $) (4) unstable focus
$ \alpha_3 $ (5) unstable node
$ \gamma $ empty
(6) saddle
Curve Region finite singular point
$ \alpha_1 $, $ \alpha_2 $ (1), (2) stable node
$ \beta $ ($ b\le b_2 $) (3) stable focus
$ \beta $ ($ b>b_2 $) (4) unstable focus
$ \alpha_3 $ (5) unstable node
$ \gamma $ empty
(6) saddle
Table 2.  Some approximation of the points on the curves $ \delta_1 $ and $ \delta_2 $
a b on the curve
$ 0 $ $ (0.9, 0.91):=b_1 $ $ \delta_1 $
$ -0.001 $ $ (0.904, 0.905) $ $ \delta_1 $
$ -0.15 $ $ (1.168, 1.169) $ $ \delta_1 $
$ -1 $ $ (1.749, 1.75) $ $ \delta_2 $
$ -2 $ $ (2.154, 2.155) $ $ \delta_2 $
$ -3 $ $ (2.467, 2.468) $ $ \delta_2 $
a b on the curve
$ 0 $ $ (0.9, 0.91):=b_1 $ $ \delta_1 $
$ -0.001 $ $ (0.904, 0.905) $ $ \delta_1 $
$ -0.15 $ $ (1.168, 1.169) $ $ \delta_1 $
$ -1 $ $ (1.749, 1.75) $ $ \delta_2 $
$ -2 $ $ (2.154, 2.155) $ $ \delta_2 $
$ -3 $ $ (2.467, 2.468) $ $ \delta_2 $
[1]

Jaume Llibre, Marzieh Mousavi. Phase portraits of the Higgins–Selkov system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 245-256. doi: 10.3934/dcdsb.2021039

[2]

Hebai Chen, Xingwu Chen, Jianhua Xie. Global phase portrait of a degenerate Bogdanov-Takens system with symmetry. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1273-1293. doi: 10.3934/dcdsb.2017062

[3]

Antonio Garijo, Armengol Gasull, Xavier Jarque. Local and global phase portrait of equation $\dot z=f(z)$. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 309-329. doi: 10.3934/dcds.2007.17.309

[4]

Xiaolin Jia, Caidi Zhao, Juan Cao. Uniform attractor of the non-autonomous discrete Selkov model. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 229-248. doi: 10.3934/dcds.2014.34.229

[5]

Honghu Liu. Phase transitions of a phase field model. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 883-894. doi: 10.3934/dcdsb.2011.16.883

[6]

Yuncheng You. Asymptotical dynamics of Selkov equations. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 193-219. doi: 10.3934/dcdss.2009.2.193

[7]

Shaoqiang Tang, Huijiang Zhao. Stability of Suliciu model for phase transitions. Communications on Pure and Applied Analysis, 2004, 3 (4) : 545-556. doi: 10.3934/cpaa.2004.3.545

[8]

Xinfu Chen, G. Caginalp, Christof Eck. A rapidly converging phase field model. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1017-1034. doi: 10.3934/dcds.2006.15.1017

[9]

Richard Evan Schwartz. Outer billiards on the Penrose kite: Compactification and renormalization. Journal of Modern Dynamics, 2011, 5 (3) : 473-581. doi: 10.3934/jmd.2011.5.473

[10]

Runlin Zhang. Equidistribution of translates of a homogeneous measure on the Borel–Serre compactification. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 2053-2071. doi: 10.3934/dcds.2021183

[11]

Sylvie Benzoni-Gavage, Laurent Chupin, Didier Jamet, Julien Vovelle. On a phase field model for solid-liquid phase transitions. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 1997-2025. doi: 10.3934/dcds.2012.32.1997

[12]

Pierluigi Colli, Antonio Segatti. Uniform attractors for a phase transition model coupling momentum balance and phase dynamics. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 909-932. doi: 10.3934/dcds.2008.22.909

[13]

José Luiz Boldrini, Gabriela Planas. A tridimensional phase-field model with convection for phase change of an alloy. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 429-450. doi: 10.3934/dcds.2005.13.429

[14]

Valeria Berti, Mauro Fabrizio, Diego Grandi. A phase field model for liquid-vapour phase transitions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 317-330. doi: 10.3934/dcdss.2013.6.317

[15]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[16]

Theodore Tachim Medjo. A two-phase flow model with delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137

[17]

Pavel Krejčí, Songmu Zheng. Pointwise asymptotic convergence of solutions for a phase separation model. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 1-18. doi: 10.3934/dcds.2006.16.1

[18]

Pavel Drábek, Stephen Robinson. Continua of local minimizers in a quasilinear model of phase transitions. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 163-172. doi: 10.3934/dcds.2013.33.163

[19]

A. Jiménez-Casas. Invariant regions and global existence for a phase field model. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 273-281. doi: 10.3934/dcdss.2008.1.273

[20]

Pavel Krejčí, Jürgen Sprekels. Long time behaviour of a singular phase transition model. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1119-1135. doi: 10.3934/dcds.2006.15.1119

2021 Impact Factor: 1.497

Article outline

Figures and Tables

[Back to Top]