doi: 10.3934/dcdsb.2022060
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Dynamics of a free boundary problem modelling species invasion with impulsive harvesting

1. 

School of Mathematical Science, Yangzhou University, Yangzhou 225002, China

2. 

School of Mathematics and Statistics, Huaiyin Normal University, Huai'an 223300, China

* Corresponding author: Email: zglin68@hotmail.com (Z. Lin)

Received  October 2021 Revised  February 2022 Early access March 2022

To understand the role of impulsive harvesting in dynamics of the invasive species, we explore an impulsive logistic equation with free boundaries. The criteria whether the species spreads or vanishes are given, and some sufficient conditions based on threshold values are established. We then discuss the spreading speeds of moving fronts when the species spreads. Our numerical simulations reveal that impulsive harvesting can reduce the spreading speed of the species, and a large impulsive harvesting is unfavorable for persistence of the species. Moreover, when impulsive harvesting is moderate, the species occurs spreading or vanishing depending on its expanding capability or initial number, that is, the species will die out with a small expanding capability or small initial number and spread with a large expanding capability.

Citation: Yue Meng, Jing Ge, Zhigui Lin. Dynamics of a free boundary problem modelling species invasion with impulsive harvesting. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2022060
References:
[1]

I. AhnS. Baek and Z. G. Lin, The spreading fronts of an infective environment in a man-environment-man epidemic model, Appl. Math. Modelling, 40 (2016), 7082-7101.  doi: 10.1016/j.apm.2016.02.038.

[2]

R. J. H. Beverton and S. F. Holt, On the dynamics of exploited fish populations, In Fishery Investigations, Ser. II, United Kingdom: Ministry of Agriculture, Fisheries and Food, 19 (1957).

[3]

J. F. CaoY. H. DuF. Li and W. T. Li, The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries, J. Funct. Anal., 277 (2019), 2772-2814.  doi: 10.1016/j.jfa.2019.02.013.

[4]

M. Clavero and E. García-Berthou, Invasive species are a leading cause of animal extinctions, Trends in Ecology & Evolution, 20 (2005), 110.  doi: 10.1016/j.tree.2005.01.003.

[5]

T. A. CrowlT. O. CristR. R. ParmenterG. Belovsky and A. E. Lugo, The spread of invasive species and infectious disease as drivers of ecosystem change, Frontiers in Ecology & Environment, 6 (2008), 238-246.  doi: 10.1890/070151.

[6]

M. De la Sen and S. Alonso-Quesada, Vaccination strategies based on feedback control techniques for a general SEIR-epidemic model, Appl. Math. Comput., 218 (2011), 3888-3904.  doi: 10.1016/j.amc.2011.09.036.

[7]

Y. H. DuZ. M. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265 (2013), 2089-2142.  doi: 10.1016/j.jfa.2013.07.016.

[8]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.  doi: 10.1137/090771089.

[9]

Y. H. Du and Z. G. Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3105-3132.  doi: 10.3934/dcdsb.2014.19.3105.

[10]

Y. H. DuL. Wei and L. Zhou, Spreading in a shifting environment modeled by the diffusive logistic equation with a free boundary, J. Dynam. Differential Equations, 30 (2018), 1389-1426.  doi: 10.1007/s10884-017-9614-2.

[11]

Y. EnatsuE. Ishiwata and T. Ushijima, Traveling wave solution for a diffusive simple epidemic model with a free boundary, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 835-850.  doi: 10.3934/dcdss.2020387.

[12]

M. FazlyM. Lewis and H. Wang, Analysis of propagation for impulsive reaction-diffusion models, SIAM J. Appl. Math., 80 (2020), 521-542.  doi: 10.1137/19M1246481.

[13]

M. FazlyM. Lewis and H. Wang, On impulsive reaction-diffusion models in higher dimensions, SIAM J. Appl. Math., 77 (2017), 224-246.  doi: 10.1137/15M1046666.

[14]

S. Gakkhar and K. Negi, Pulse vaccination in SIRS epidemic model with non-monotonic incidence rate, Chaos Solitons Fractals, 35 (2008), 626-638.  doi: 10.1016/j.chaos.2006.05.054.

[15]

J. GeK. I. KimZ. G. Lin and H. P. Zhu, A sis reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differential Equations, 259 (2015), 5486-5509.  doi: 10.1016/j.jde.2015.06.035.

[16]

H. GuB. D. Lou and M. L. Zhou, Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 269 (2015), 1714-1768.  doi: 10.1016/j.jfa.2015.07.002.

[17]

H. M. Huang and M. X. Wang, The reaction-diffusion system for an SIR epidemic model with a free boundary, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2039-2050.  doi: 10.3934/dcdsb.2015.20.2039.

[18]

M. Lewis and B. T. Li, Spreading speed, traveling waves, and minimal domain size in impulsive reaction-diffusion models, Bull. Math. Biol., 74 (2012), 2383-2402.  doi: 10.1007/s11538-012-9757-6.

[19]

M. LewisJ. Renclawowicz and P. Van den Driessche, Traveling waves and spread rates for a West Nile virus model, Bull. Math. Biol., 68 (2006), 3-23.  doi: 10.1007/s11538-005-9018-z.

[20]

J. H. LiangQ. YanC. C. Xiang and S. Y. Tang, A reaction-diffusion population growth equation with multiple pulse perturbations, Commun. Nonlinear Sci. Numer. Simul., 74 (2019), 122-137.  doi: 10.1016/j.cnsns.2019.02.015.

[21]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. doi: 10.1142/3302.

[22]

Q. X. Lin, X. D. Xie, F. D. Chen and Q. F. Lin, Dynamical analysis of a logistic model with impulsive Holling type-II harvesting, Adv. Difference Equ., 2018 (2018), Paper No. 112, 22 pp. doi: 10.1186/s13662-018-1563-5.

[23]

Z. G. Lin, A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892.  doi: 10.1088/0951-7715/20/8/004.

[24]

Z. G. Lin and H. P. Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary, J. Math. Biol., 75 (2017), 1381-1409.  doi: 10.1007/s00285-017-1124-7.

[25]

A. S. MacDougall and R. Turkington, Are invasive species the drivers or passengers of change in degraded ecosystems?, Ecology, 86 (2005), 42-55.  doi: 10.1890/04-0669.

[26]

Y. Meng, Z. G. Lin and M. Pedersen, A model for spatial spreading and dynamics of fox rabies on a growing domain, Electron. J. Qual. Theory Differ. Equ., 20 (2020), Paper No. 20, 14 pp. doi: 10.14232/ejqtde.2020.1.20.

[27]

Y. MengZ. G. Lin and M. Pedersen, Effects of impulsive harvesting and an evolving domain in a diffusive logistic model, Nonlinearity, 34 (2021), 7005-7029.  doi: 10.1088/1361-6544/ac1f78.

[28]

G. Nadin, The principal eigenvalue of a space-time periodic parabolic operator, Ann. Mat. Pura Appl., 188 (2009), 269-295.  doi: 10.1007/s10231-008-0075-4.

[29]

G. P. PangL. S. ChenW. J. Xu and G. Fu, A stage structure pest management model with impulsive state feedback control, Commun. Nonlinear Sci. Numer. Simul., 23 (2015), 78-88.  doi: 10.1016/j.cnsns.2014.10.033.

[30]

R. Peng and D. Wei, The periodic-parabolic logistic equation on $\mathbb{R}^N$, Discrete Contin. Dyn. Syst., 32 (2012), 619-641.  doi: 10.3934/dcds.2012.32.619.

[31]

R. Peng and X. Q. Zhao, The diffusive logistic model with a free boundary and seasonal succession, Discrete Contin. Dyn. Syst., 33 (2013), 2007-2031.  doi: 10.3934/dcds.2013.33.2007.

[32]

J. A. Sherratt, Periodic travelling waves in cyclic predator-prey systems, Ecology Letters, 4 (2001), 30-37.  doi: 10.1046/j.1461-0248.2001.00193.x.

[33]

J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218.  doi: 10.2307/2332328.

[34]

L. T. TakahashiN. A. MaidanaW. C. FerreiraP. Pulino and H. M. Yang, Mathematical models for the Aedes aegypti dispersal dynamics: Travelling waves by wing and wind, Bull. Math. Biol., 67 (2005), 509-528.  doi: 10.1016/j.bulm.2004.08.005.

[35]

S. Y. Tan and R. A. Cheke, State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences, J. Math. Biol., 50 (2005), 257-292.  doi: 10.1007/s00285-004-0290-6.

[36]

C. R. Tian and S. G. Ruan, A free boundary problem for Aedes aegypti mosquito invasion, Appl. Math. Model., 46 (2017), 203-217.  doi: 10.1016/j.apm.2017.01.050.

[37]

M. X. Wang, The diffusive logistic equation with a free boundary and sign-changing coefficient, J. Differential Equations, 258 (2015), 1252-1266.  doi: 10.1016/j.jde.2014.10.022.

[38]

Z. G. WangH. Nie and Y. H. Du, Spreading speed for a West Nile virus model with free boundary, J. Math. Biol., 79 (2019), 433-466.  doi: 10.1007/s00285-019-01363-2.

[39]

C. J. WeiJ. N. Liu and L. S. Chen, Homoclinic bifurcation of a ratio-dependent predator-prey system with impulsive harvesting, Nonlinear Dynam., 89 (2017), 2001-2012.  doi: 10.1007/s11071-017-3567-1.

[40]

R. W. Wu and X. Q. Zhao, Spatial invasion of a birth pulse population with nonlocal dispersal, SIAM J. Appl. Math., 79 (2019), 1075-1097.  doi: 10.1137/18M1209805.

[41]

M. ZhaoW. T. Li and J. F. Cao, Dynamics for an Sir epidemic model with nonlocal diffusion and free boundaries, Acta Math. Sci., 41 (2021), 1081-1106.  doi: 10.1007/s10473-021-0404-x.

show all references

References:
[1]

I. AhnS. Baek and Z. G. Lin, The spreading fronts of an infective environment in a man-environment-man epidemic model, Appl. Math. Modelling, 40 (2016), 7082-7101.  doi: 10.1016/j.apm.2016.02.038.

[2]

R. J. H. Beverton and S. F. Holt, On the dynamics of exploited fish populations, In Fishery Investigations, Ser. II, United Kingdom: Ministry of Agriculture, Fisheries and Food, 19 (1957).

[3]

J. F. CaoY. H. DuF. Li and W. T. Li, The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries, J. Funct. Anal., 277 (2019), 2772-2814.  doi: 10.1016/j.jfa.2019.02.013.

[4]

M. Clavero and E. García-Berthou, Invasive species are a leading cause of animal extinctions, Trends in Ecology & Evolution, 20 (2005), 110.  doi: 10.1016/j.tree.2005.01.003.

[5]

T. A. CrowlT. O. CristR. R. ParmenterG. Belovsky and A. E. Lugo, The spread of invasive species and infectious disease as drivers of ecosystem change, Frontiers in Ecology & Environment, 6 (2008), 238-246.  doi: 10.1890/070151.

[6]

M. De la Sen and S. Alonso-Quesada, Vaccination strategies based on feedback control techniques for a general SEIR-epidemic model, Appl. Math. Comput., 218 (2011), 3888-3904.  doi: 10.1016/j.amc.2011.09.036.

[7]

Y. H. DuZ. M. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265 (2013), 2089-2142.  doi: 10.1016/j.jfa.2013.07.016.

[8]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.  doi: 10.1137/090771089.

[9]

Y. H. Du and Z. G. Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3105-3132.  doi: 10.3934/dcdsb.2014.19.3105.

[10]

Y. H. DuL. Wei and L. Zhou, Spreading in a shifting environment modeled by the diffusive logistic equation with a free boundary, J. Dynam. Differential Equations, 30 (2018), 1389-1426.  doi: 10.1007/s10884-017-9614-2.

[11]

Y. EnatsuE. Ishiwata and T. Ushijima, Traveling wave solution for a diffusive simple epidemic model with a free boundary, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 835-850.  doi: 10.3934/dcdss.2020387.

[12]

M. FazlyM. Lewis and H. Wang, Analysis of propagation for impulsive reaction-diffusion models, SIAM J. Appl. Math., 80 (2020), 521-542.  doi: 10.1137/19M1246481.

[13]

M. FazlyM. Lewis and H. Wang, On impulsive reaction-diffusion models in higher dimensions, SIAM J. Appl. Math., 77 (2017), 224-246.  doi: 10.1137/15M1046666.

[14]

S. Gakkhar and K. Negi, Pulse vaccination in SIRS epidemic model with non-monotonic incidence rate, Chaos Solitons Fractals, 35 (2008), 626-638.  doi: 10.1016/j.chaos.2006.05.054.

[15]

J. GeK. I. KimZ. G. Lin and H. P. Zhu, A sis reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differential Equations, 259 (2015), 5486-5509.  doi: 10.1016/j.jde.2015.06.035.

[16]

H. GuB. D. Lou and M. L. Zhou, Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 269 (2015), 1714-1768.  doi: 10.1016/j.jfa.2015.07.002.

[17]

H. M. Huang and M. X. Wang, The reaction-diffusion system for an SIR epidemic model with a free boundary, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2039-2050.  doi: 10.3934/dcdsb.2015.20.2039.

[18]

M. Lewis and B. T. Li, Spreading speed, traveling waves, and minimal domain size in impulsive reaction-diffusion models, Bull. Math. Biol., 74 (2012), 2383-2402.  doi: 10.1007/s11538-012-9757-6.

[19]

M. LewisJ. Renclawowicz and P. Van den Driessche, Traveling waves and spread rates for a West Nile virus model, Bull. Math. Biol., 68 (2006), 3-23.  doi: 10.1007/s11538-005-9018-z.

[20]

J. H. LiangQ. YanC. C. Xiang and S. Y. Tang, A reaction-diffusion population growth equation with multiple pulse perturbations, Commun. Nonlinear Sci. Numer. Simul., 74 (2019), 122-137.  doi: 10.1016/j.cnsns.2019.02.015.

[21]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. doi: 10.1142/3302.

[22]

Q. X. Lin, X. D. Xie, F. D. Chen and Q. F. Lin, Dynamical analysis of a logistic model with impulsive Holling type-II harvesting, Adv. Difference Equ., 2018 (2018), Paper No. 112, 22 pp. doi: 10.1186/s13662-018-1563-5.

[23]

Z. G. Lin, A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892.  doi: 10.1088/0951-7715/20/8/004.

[24]

Z. G. Lin and H. P. Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary, J. Math. Biol., 75 (2017), 1381-1409.  doi: 10.1007/s00285-017-1124-7.

[25]

A. S. MacDougall and R. Turkington, Are invasive species the drivers or passengers of change in degraded ecosystems?, Ecology, 86 (2005), 42-55.  doi: 10.1890/04-0669.

[26]

Y. Meng, Z. G. Lin and M. Pedersen, A model for spatial spreading and dynamics of fox rabies on a growing domain, Electron. J. Qual. Theory Differ. Equ., 20 (2020), Paper No. 20, 14 pp. doi: 10.14232/ejqtde.2020.1.20.

[27]

Y. MengZ. G. Lin and M. Pedersen, Effects of impulsive harvesting and an evolving domain in a diffusive logistic model, Nonlinearity, 34 (2021), 7005-7029.  doi: 10.1088/1361-6544/ac1f78.

[28]

G. Nadin, The principal eigenvalue of a space-time periodic parabolic operator, Ann. Mat. Pura Appl., 188 (2009), 269-295.  doi: 10.1007/s10231-008-0075-4.

[29]

G. P. PangL. S. ChenW. J. Xu and G. Fu, A stage structure pest management model with impulsive state feedback control, Commun. Nonlinear Sci. Numer. Simul., 23 (2015), 78-88.  doi: 10.1016/j.cnsns.2014.10.033.

[30]

R. Peng and D. Wei, The periodic-parabolic logistic equation on $\mathbb{R}^N$, Discrete Contin. Dyn. Syst., 32 (2012), 619-641.  doi: 10.3934/dcds.2012.32.619.

[31]

R. Peng and X. Q. Zhao, The diffusive logistic model with a free boundary and seasonal succession, Discrete Contin. Dyn. Syst., 33 (2013), 2007-2031.  doi: 10.3934/dcds.2013.33.2007.

[32]

J. A. Sherratt, Periodic travelling waves in cyclic predator-prey systems, Ecology Letters, 4 (2001), 30-37.  doi: 10.1046/j.1461-0248.2001.00193.x.

[33]

J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218.  doi: 10.2307/2332328.

[34]

L. T. TakahashiN. A. MaidanaW. C. FerreiraP. Pulino and H. M. Yang, Mathematical models for the Aedes aegypti dispersal dynamics: Travelling waves by wing and wind, Bull. Math. Biol., 67 (2005), 509-528.  doi: 10.1016/j.bulm.2004.08.005.

[35]

S. Y. Tan and R. A. Cheke, State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences, J. Math. Biol., 50 (2005), 257-292.  doi: 10.1007/s00285-004-0290-6.

[36]

C. R. Tian and S. G. Ruan, A free boundary problem for Aedes aegypti mosquito invasion, Appl. Math. Model., 46 (2017), 203-217.  doi: 10.1016/j.apm.2017.01.050.

[37]

M. X. Wang, The diffusive logistic equation with a free boundary and sign-changing coefficient, J. Differential Equations, 258 (2015), 1252-1266.  doi: 10.1016/j.jde.2014.10.022.

[38]

Z. G. WangH. Nie and Y. H. Du, Spreading speed for a West Nile virus model with free boundary, J. Math. Biol., 79 (2019), 433-466.  doi: 10.1007/s00285-019-01363-2.

[39]

C. J. WeiJ. N. Liu and L. S. Chen, Homoclinic bifurcation of a ratio-dependent predator-prey system with impulsive harvesting, Nonlinear Dynam., 89 (2017), 2001-2012.  doi: 10.1007/s11071-017-3567-1.

[40]

R. W. Wu and X. Q. Zhao, Spatial invasion of a birth pulse population with nonlocal dispersal, SIAM J. Appl. Math., 79 (2019), 1075-1097.  doi: 10.1137/18M1209805.

[41]

M. ZhaoW. T. Li and J. F. Cao, Dynamics for an Sir epidemic model with nonlocal diffusion and free boundaries, Acta Math. Sci., 41 (2021), 1081-1106.  doi: 10.1007/s10473-021-0404-x.

Figure 1.  A simulation of the invasive species without impulses. Graph (a) show that species will persist and spread in the whole space, graph (b) is its sections at $ t = 0, 3, 6, 10 $. Graph (c) is the right view of (a) and projection of $ u $ on the $ t-u- $plane
Figure 2.  The distribution of the species with a large harvesting rate, where $ H(u) $ takes Beverton-Holt function with $ \beta = 2 $ and $ \alpha = 10 $. The spatial distribution of the species in Graph (a) indicates that the species presents eventual extinction, and the contour one in Graph (b) clearly shows that $ u(t, x) $ decays to zero (the purple line). Graph (c) shows that the number of the species drops sharply when harvesting is implemented every time $ \tau = 2 $
Figure 3.  The distribution of the species with a small harvesting rate, where $ H(u) $ takes Beverton-Holt function with $ \beta = 8 $ and $ \alpha = 10 $. Graphs (a)-(c) indicate that the species persists eventually. The impact of impulsive harvesting is shown in Graph (c)
Figure 4.  The distribution of the species when $ H(u) $ is chosen as Beverton-Holt function with $ \beta = 4 $ and $ \alpha = 10 $. The expanding capability $ \mu $ for Graphs (1a)-(1c) and (2a)-(2c) are $ \mu = 1 $ and $ \mu = 20 $, respectively. For the small expanding capacity $ \mu = 1 $, the fact that the species goes to extinction as time increases is shown in Graphs (1a)-(1c). The small expanding capability of the species is exhibited in Graph (1b). The projection of $ u $ on the $ t-u- $plane in Graph (1c) shows that harvesting takes place every time $ \tau = 2 $. For the large expanding capacity $ \mu = 20 $, the species will persist, which is shown in Graphs (2a)-(2c)
[1]

Jingli Ren, Dandan Zhu, Haiyan Wang. Spreading-vanishing dichotomy in information diffusion in online social networks with intervention. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1843-1865. doi: 10.3934/dcdsb.2018240

[2]

Jianping Wang, Mingxin Wang. Free boundary problems with nonlocal and local diffusions Ⅱ: Spreading-vanishing and long-time behavior. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4721-4736. doi: 10.3934/dcdsb.2020121

[3]

Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks and Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583

[4]

Fang Li, Xing Liang, Wenxian Shen. Diffusive KPP equations with free boundaries in time almost periodic environments: I. Spreading and vanishing dichotomy. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3317-3338. doi: 10.3934/dcds.2016.36.3317

[5]

Zhiguo Wang, Hua Nie, Yihong Du. Asymptotic spreading speed for the weak competition system with a free boundary. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5223-5262. doi: 10.3934/dcds.2019213

[6]

Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441

[7]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[8]

Meng Zhao, Wan-Tong Li, Wenjie Ni. Spreading speed of a degenerate and cooperative epidemic model with free boundaries. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 981-999. doi: 10.3934/dcdsb.2019199

[9]

Mohammed Mesk, Ali Moussaoui. On an upper bound for the spreading speed. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3897-3912. doi: 10.3934/dcdsb.2021210

[10]

Hans Weinberger. On sufficient conditions for a linearly determinate spreading speed. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2267-2280. doi: 10.3934/dcdsb.2012.17.2267

[11]

Kamruzzaman Khan, Timothy M. Schaerf, Yihong Du. Effects of environmental heterogeneity on species spreading via numerical analysis of some free boundary models. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022077

[12]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[13]

Guo Lin, Yahui Wang. Spreading speed in a non-monotonic Ricker competitive integrodifference system. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022108

[14]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[15]

Peixuan Weng. Spreading speed and traveling wavefront of an age-structured population diffusing in a 2D lattice strip. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 883-904. doi: 10.3934/dcdsb.2009.12.883

[16]

Gregoire Nadin. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1785-1803. doi: 10.3934/dcdsb.2015.20.1785

[17]

Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

[18]

Shuang-Ming Wang, Zhaosheng Feng, Zhi-Cheng Wang, Liang Zhang. Spreading speed and periodic traveling waves of a time periodic and diffusive SI epidemic model with demographic structure. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2005-2034. doi: 10.3934/cpaa.2021145

[19]

Feliz Minhós, Rui Carapinha. On higher order nonlinear impulsive boundary value problems. Conference Publications, 2015, 2015 (special) : 851-860. doi: 10.3934/proc.2015.0851

[20]

Hans F. Weinberger, Xiao-Qiang Zhao. An extension of the formula for spreading speeds. Mathematical Biosciences & Engineering, 2010, 7 (1) : 187-194. doi: 10.3934/mbe.2010.7.187

2021 Impact Factor: 1.497

Article outline

Figures and Tables

[Back to Top]