doi: 10.3934/dcdsb.2022065
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Statistical solution and Kolmogorov entropy for the impulsive discrete Klein-Gordon-Schrödinger-type equations

1. 

Department of Mathematics, Wenzhou University, Wenzhou, 325035, China

2. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430071, China

* Corresponding author: Caidi Zhao

Received  December 2021 Early access March 2022

This paper studies the impulsive discrete Klein-Gordon-Schrödinger-type equations. We first prove that the problem of the discrete Klein-Gordon-Schrödinger-type equations with initial and impulsive conditions is global well-posedness. Then we establish that the solution operators form a continuous process and that this process possesses a pullback attractor and a family of invariant Borel probability measures. Further, we prove that this family of Borel probability measures satisfies the Liouville type theorem piecewise and is a statistical solution of the impulsive discrete Klein-Gordon-Schrödinger-type equations. Finally, we formulate the concept of Kolmogorov entropy for the statistical solution and estimate its upper bound.

Citation: Zehan Lin, Chongbin Xu, Caidi Zhao, Chujin Li. Statistical solution and Kolmogorov entropy for the impulsive discrete Klein-Gordon-Schrödinger-type equations. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2022065
References:
[1]

M. AbounouhO. Goubet and A. Hakim, Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system, Differential Integral Equation, 16 (2003), 573-581. 

[2]

D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations: Periodic Solutions and Application, John Wiley, New York, 1993.

[3]

T. CaraballoP. E. Kloeden and J. Real, Invariant measures and statistical solutions of the globally modified Navier-Stokes equations, Discrete Cont. Dyn. Syst.-B., 10 (2008), 761-781.  doi: 10.3934/dcdsb.2008.10.761.

[4]

M. Chekroun and N. Glatt-Holtz, Invariant measures for dissipative dynamical systems: Abstract results and applications, Comm. Math. Phys., 316 (2012), 723-761.  doi: 10.1007/s00220-012-1515-y.

[5]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49. American Mathematical Society, Providence, RI, 2002.

[6] C. FoiasO. ManleyR. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511546754.
[7]

B. Guo and Y. Li, Attractor for dissipative Klein-Gordon-Schrödinger equations in $\mathbb{R}^3$, J. Differential Equations, 136 (1997), 356-377.  doi: 10.1006/jdeq.1996.3242.

[8]

H. Jiang and C. Zhao, Trajectory statistical solutions and Liouville type theorem for nonlinear wave equations with polynomial growth, Adv. Differential Equations, 26 (2021), 107-132. 

[9]

P. E. KloedenP. Marín-Rubio and J. Real, Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations, Comm. Pure Appl. Anal., 8 (2009), 785-802.  doi: 10.3934/cpaa.2009.8.785.

[10]

C. LiC. HsuJ. Lin and C. Zhao, Global attractors for the discrete Klein-Gordon-Schrödinger type equations, J. Differential Equ. Appl., 20 (2014), 1404-1426.  doi: 10.1080/10236198.2014.933821.

[11]

G. Lorentz, M. Golistschek and Y. Makovoz, Constructive Approximation, Advanced Problem, [Fundamental Principles of Mathematical Sciences], 304. Springer-Verlag, Berlin, 1996.

[12]

K. Lu and B. Wang, Global attractors for the Klein-Gordon-Schrödinger equation in unbounded domains, J. Differential Equations, 170 (2001), 281-316.  doi: 10.1006/jdeq.2000.3827.

[13]

K. Lu and B. Wang, Upper semicontinuity of attractors for Klein-Gordon-Schrödinger equation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 157-168.  doi: 10.1142/S0218127405012077.

[14]

G. Łukaszewicz, Pullback attractors and statistical solutions for 2-D Navier-Stokes equations, Discrete Cont. Dyn. Syst.-B., 9 (2008), 643-659.  doi: 10.3934/dcdsb.2008.9.643.

[15]

G. Łukaszewicz and J. C. Robinson, Invariant measures for non-autonomous dissipative dynamical systems, Discrete Cont. Dyn. Syst., 34 (2014), 4211-4222.  doi: 10.3934/dcds.2014.34.4211.

[16]

M. N. Poulou and N. M. Stavrakakis, Global attractor for a system of Klein-Gordon-Schrödinger type in all $\mathbb{R}$, Nonlinear Anal., 74 (2011), 2548-2562.  doi: 10.1016/j.na.2010.12.009.

[17]

C. WangG. Xue and C. Zhao, Invariant Borel probability measures for discrete long-wave-short-wave resonance equations, Appl. Math. Comp., 339 (2018), 853-865.  doi: 10.1016/j.amc.2018.06.059.

[18]

S. Wu and J. Huang, Invariant measure and statistical solutions for non-autonomous discrete Klein-Gordon-Schrödinger-type equations, J. Appl. Anal. Comp., 10 (2020), 1516-1533.  doi: 10.11948/20190243.

[19]

X. YanY. Wu and C. Zhong, Uniform attractors for impulsive reaction-diffusion equations, Appl. Math. Comp., 216 (2010), 2534-2543.  doi: 10.1016/j.amc.2010.03.095.

[20]

C. Zhao and T. Caraballo, Asymptotic regularity of trajectory attractor and trajectory statistical solution for the 3D globally modified Navier-Stokes equations, J. Differential Equations, 266 (2019), 7205-7229.  doi: 10.1016/j.jde.2018.11.032.

[21]

C. ZhaoT. Caraballo and G. Łukaszewicz, Statistical solution and Liouville type theorem for the Klein-Gordon-Schrödinger equations, J. Differential Equations, 281 (2021), 1-32.  doi: 10.1016/j.jde.2021.01.039.

[22]

C. Zhao, H. Jiang and T. Caraballo, Statistical solutions and piecewise Liouville theorem for the impulsive reaction-diffusion equations on infinite lattices,, Appl. Math. Comp., 404 (2021), Paper No. 126103, 14 pp. doi: 10.1016/j.amc.2021.126103.

[23]

C. ZhaoY. Li and T. Caraballo, Trajectory statistical solutions and Liouville type equations for evolution equations: Abstract results and applications, J. Differential Equations, 269 (2020), 467-494.  doi: 10.1016/j.jde.2019.12.011.

[24]

C. Zhao, Y. Li and G. Łukaszewicz, Statistical solution and partial degenerate regularity for the 2D non-autonomous magneto-micropolar fluids, Z. Angew. Math. Phys., 71 (2020), Paper No. 141, 24 pp. doi: 10.1007/s00033-020-01368-8.

[25]

C. Zhao, Y. Li and Y. Sang, Using trajectory attractor to construct trajectory statistical solution for the 3D incompressible micropolar flows, Z. Angew. Math. Mech., 100 (2020), e201800197, 15 pp. doi: 10.1002/zamm.201800197.

[26]

C. Zhao, Y. Li and Z. Song, Trajectory statistical solutions for the 3D Navier-Stokes equations: The trajectory attractor approach, Nonlinear Anal.-RWA, 53 (2020), 103077, 10 pp. doi: 10.1016/j.nonrwa.2019.103077.

[27]

C. Zhao, Z. Song and T. Caraballo, Strong trajectory statistical solutions and Liouville type equations for dissipative Euler equations, Appl. Math. Lett., 99 (2020), 105981, 6 pp. doi: 10.1016/j.aml.2019.07.012.

[28]

C. ZhaoJ. Wang and T. Caraballo, Invariant sample measures and random Liouville type theorem for the two-dimensional stochastic Navier-Stokes equations, J. Differential Equations, 317 (2022), 474-494.  doi: 10.1016/j.jde.2022.02.007.

[29]

C. ZhaoG. Xue and G. Łukaszewicz, Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations, Discrete Cont. Dyn. Syst.-B., 23 (2018), 4021-4044.  doi: 10.3934/dcdsb.2018122.

[30]

C. Zhao and S. Zhou, Compact kernel sections for nonautonomous Klein-Gordon-Schrödinger equations on infinite lattices, J. Math. Anal. Appl., 332 (2007), 32-56.  doi: 10.1016/j.jmaa.2006.10.002.

[31]

S. Zhou and X. Han, Uniform exponential attractors for non-autonomous KGS and Zakharov lattice systems with quasiperiodic external forces, Nonlinear Anal., 78 (2013), 141-155.  doi: 10.1016/j.na.2012.10.001.

[32]

S. ZhouC. Zhao and Y. Wang, Finite dimensionality and upper semicontinuity of compact kernel sections of non-autonomous lattice systems, Discrete Contin. Dyn. Syst., 21 (2008), 1259-1277.  doi: 10.3934/dcds.2008.21.1259.

[33]

Z. ZhuY. Sang and C. Zhao, Pullback attractor and invariant measures for the discrete Zakharov equations, J. Appl. Anal. Comp., 9 (2019), 2333-2357.  doi: 10.11948/20190091.

[34]

Z. Zhu and C. Zhao, Pullback attractor and invariant measures for the three-dimensional regularized MHD equations, Discrete Cont. Dyn. Syst., 38 (2018), 1461-1477.  doi: 10.3934/dcds.2018060.

show all references

References:
[1]

M. AbounouhO. Goubet and A. Hakim, Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system, Differential Integral Equation, 16 (2003), 573-581. 

[2]

D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations: Periodic Solutions and Application, John Wiley, New York, 1993.

[3]

T. CaraballoP. E. Kloeden and J. Real, Invariant measures and statistical solutions of the globally modified Navier-Stokes equations, Discrete Cont. Dyn. Syst.-B., 10 (2008), 761-781.  doi: 10.3934/dcdsb.2008.10.761.

[4]

M. Chekroun and N. Glatt-Holtz, Invariant measures for dissipative dynamical systems: Abstract results and applications, Comm. Math. Phys., 316 (2012), 723-761.  doi: 10.1007/s00220-012-1515-y.

[5]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49. American Mathematical Society, Providence, RI, 2002.

[6] C. FoiasO. ManleyR. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511546754.
[7]

B. Guo and Y. Li, Attractor for dissipative Klein-Gordon-Schrödinger equations in $\mathbb{R}^3$, J. Differential Equations, 136 (1997), 356-377.  doi: 10.1006/jdeq.1996.3242.

[8]

H. Jiang and C. Zhao, Trajectory statistical solutions and Liouville type theorem for nonlinear wave equations with polynomial growth, Adv. Differential Equations, 26 (2021), 107-132. 

[9]

P. E. KloedenP. Marín-Rubio and J. Real, Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations, Comm. Pure Appl. Anal., 8 (2009), 785-802.  doi: 10.3934/cpaa.2009.8.785.

[10]

C. LiC. HsuJ. Lin and C. Zhao, Global attractors for the discrete Klein-Gordon-Schrödinger type equations, J. Differential Equ. Appl., 20 (2014), 1404-1426.  doi: 10.1080/10236198.2014.933821.

[11]

G. Lorentz, M. Golistschek and Y. Makovoz, Constructive Approximation, Advanced Problem, [Fundamental Principles of Mathematical Sciences], 304. Springer-Verlag, Berlin, 1996.

[12]

K. Lu and B. Wang, Global attractors for the Klein-Gordon-Schrödinger equation in unbounded domains, J. Differential Equations, 170 (2001), 281-316.  doi: 10.1006/jdeq.2000.3827.

[13]

K. Lu and B. Wang, Upper semicontinuity of attractors for Klein-Gordon-Schrödinger equation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 157-168.  doi: 10.1142/S0218127405012077.

[14]

G. Łukaszewicz, Pullback attractors and statistical solutions for 2-D Navier-Stokes equations, Discrete Cont. Dyn. Syst.-B., 9 (2008), 643-659.  doi: 10.3934/dcdsb.2008.9.643.

[15]

G. Łukaszewicz and J. C. Robinson, Invariant measures for non-autonomous dissipative dynamical systems, Discrete Cont. Dyn. Syst., 34 (2014), 4211-4222.  doi: 10.3934/dcds.2014.34.4211.

[16]

M. N. Poulou and N. M. Stavrakakis, Global attractor for a system of Klein-Gordon-Schrödinger type in all $\mathbb{R}$, Nonlinear Anal., 74 (2011), 2548-2562.  doi: 10.1016/j.na.2010.12.009.

[17]

C. WangG. Xue and C. Zhao, Invariant Borel probability measures for discrete long-wave-short-wave resonance equations, Appl. Math. Comp., 339 (2018), 853-865.  doi: 10.1016/j.amc.2018.06.059.

[18]

S. Wu and J. Huang, Invariant measure and statistical solutions for non-autonomous discrete Klein-Gordon-Schrödinger-type equations, J. Appl. Anal. Comp., 10 (2020), 1516-1533.  doi: 10.11948/20190243.

[19]

X. YanY. Wu and C. Zhong, Uniform attractors for impulsive reaction-diffusion equations, Appl. Math. Comp., 216 (2010), 2534-2543.  doi: 10.1016/j.amc.2010.03.095.

[20]

C. Zhao and T. Caraballo, Asymptotic regularity of trajectory attractor and trajectory statistical solution for the 3D globally modified Navier-Stokes equations, J. Differential Equations, 266 (2019), 7205-7229.  doi: 10.1016/j.jde.2018.11.032.

[21]

C. ZhaoT. Caraballo and G. Łukaszewicz, Statistical solution and Liouville type theorem for the Klein-Gordon-Schrödinger equations, J. Differential Equations, 281 (2021), 1-32.  doi: 10.1016/j.jde.2021.01.039.

[22]

C. Zhao, H. Jiang and T. Caraballo, Statistical solutions and piecewise Liouville theorem for the impulsive reaction-diffusion equations on infinite lattices,, Appl. Math. Comp., 404 (2021), Paper No. 126103, 14 pp. doi: 10.1016/j.amc.2021.126103.

[23]

C. ZhaoY. Li and T. Caraballo, Trajectory statistical solutions and Liouville type equations for evolution equations: Abstract results and applications, J. Differential Equations, 269 (2020), 467-494.  doi: 10.1016/j.jde.2019.12.011.

[24]

C. Zhao, Y. Li and G. Łukaszewicz, Statistical solution and partial degenerate regularity for the 2D non-autonomous magneto-micropolar fluids, Z. Angew. Math. Phys., 71 (2020), Paper No. 141, 24 pp. doi: 10.1007/s00033-020-01368-8.

[25]

C. Zhao, Y. Li and Y. Sang, Using trajectory attractor to construct trajectory statistical solution for the 3D incompressible micropolar flows, Z. Angew. Math. Mech., 100 (2020), e201800197, 15 pp. doi: 10.1002/zamm.201800197.

[26]

C. Zhao, Y. Li and Z. Song, Trajectory statistical solutions for the 3D Navier-Stokes equations: The trajectory attractor approach, Nonlinear Anal.-RWA, 53 (2020), 103077, 10 pp. doi: 10.1016/j.nonrwa.2019.103077.

[27]

C. Zhao, Z. Song and T. Caraballo, Strong trajectory statistical solutions and Liouville type equations for dissipative Euler equations, Appl. Math. Lett., 99 (2020), 105981, 6 pp. doi: 10.1016/j.aml.2019.07.012.

[28]

C. ZhaoJ. Wang and T. Caraballo, Invariant sample measures and random Liouville type theorem for the two-dimensional stochastic Navier-Stokes equations, J. Differential Equations, 317 (2022), 474-494.  doi: 10.1016/j.jde.2022.02.007.

[29]

C. ZhaoG. Xue and G. Łukaszewicz, Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations, Discrete Cont. Dyn. Syst.-B., 23 (2018), 4021-4044.  doi: 10.3934/dcdsb.2018122.

[30]

C. Zhao and S. Zhou, Compact kernel sections for nonautonomous Klein-Gordon-Schrödinger equations on infinite lattices, J. Math. Anal. Appl., 332 (2007), 32-56.  doi: 10.1016/j.jmaa.2006.10.002.

[31]

S. Zhou and X. Han, Uniform exponential attractors for non-autonomous KGS and Zakharov lattice systems with quasiperiodic external forces, Nonlinear Anal., 78 (2013), 141-155.  doi: 10.1016/j.na.2012.10.001.

[32]

S. ZhouC. Zhao and Y. Wang, Finite dimensionality and upper semicontinuity of compact kernel sections of non-autonomous lattice systems, Discrete Contin. Dyn. Syst., 21 (2008), 1259-1277.  doi: 10.3934/dcds.2008.21.1259.

[33]

Z. ZhuY. Sang and C. Zhao, Pullback attractor and invariant measures for the discrete Zakharov equations, J. Appl. Anal. Comp., 9 (2019), 2333-2357.  doi: 10.11948/20190091.

[34]

Z. Zhu and C. Zhao, Pullback attractor and invariant measures for the three-dimensional regularized MHD equations, Discrete Cont. Dyn. Syst., 38 (2018), 1461-1477.  doi: 10.3934/dcds.2018060.

[1]

Marilena N. Poulou, Nikolaos M. Stavrakakis. Finite dimensionality of a Klein-Gordon-Schrödinger type system. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 149-161. doi: 10.3934/dcdss.2009.2.149

[2]

Congcong Li, Chunqiu Li, Jintao Wang. Statistical solution and Liouville type theorem for coupled Schrödinger-Boussinesq equations on infinite lattices. Discrete and Continuous Dynamical Systems - B, 2022, 27 (10) : 6173-6196. doi: 10.3934/dcdsb.2021311

[3]

Stefano Pasquali. A Nekhoroshev type theorem for the nonlinear Klein-Gordon equation with potential. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3573-3594. doi: 10.3934/dcdsb.2017215

[4]

Caidi Zhao, Gang Xue, Grzegorz Łukaszewicz. Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 4021-4044. doi: 10.3934/dcdsb.2018122

[5]

Ji Shu. Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations driven by fractional Brownian motions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1587-1599. doi: 10.3934/dcdsb.2017077

[6]

Fábio Natali, Ademir Pastor. Orbital stability of periodic waves for the Klein-Gordon-Schrödinger system. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 221-238. doi: 10.3934/dcds.2011.31.221

[7]

Ahmed Y. Abdallah. Asymptotic behavior of the Klein-Gordon-Schrödinger lattice dynamical systems. Communications on Pure and Applied Analysis, 2006, 5 (1) : 55-69. doi: 10.3934/cpaa.2006.5.55

[8]

Hiroshi Isozaki, Hisashi Morioka. A Rellich type theorem for discrete Schrödinger operators. Inverse Problems and Imaging, 2014, 8 (2) : 475-489. doi: 10.3934/ipi.2014.8.475

[9]

Xiaohui Yu. Liouville type theorem for nonlinear elliptic equation with general nonlinearity. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4947-4966. doi: 10.3934/dcds.2014.34.4947

[10]

Xiaomei Chen, Xiaohui Yu. Liouville type theorem for Hartree-Fock Equation on half space. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2079-2100. doi: 10.3934/cpaa.2022050

[11]

Fábio Natali, Ademir Pastor. Stability properties of periodic standing waves for the Klein-Gordon-Schrödinger system. Communications on Pure and Applied Analysis, 2010, 9 (2) : 413-430. doi: 10.3934/cpaa.2010.9.413

[12]

A. F. Almeida, M. M. Cavalcanti, J. P. Zanchetta. Exponential decay for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2039-2061. doi: 10.3934/cpaa.2018097

[13]

Adriana Flores de Almeida, Marcelo Moreira Cavalcanti, Janaina Pedroso Zanchetta. Exponential stability for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping. Evolution Equations and Control Theory, 2019, 8 (4) : 847-865. doi: 10.3934/eect.2019041

[14]

Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic and Related Models, 2018, 11 (4) : 1037-1062. doi: 10.3934/krm.2018040

[15]

Salah Missaoui, Ezzeddine Zahrouni. Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system with cubic nonlinearities in $\mathbb{R}^2$. Communications on Pure and Applied Analysis, 2015, 14 (2) : 695-716. doi: 10.3934/cpaa.2015.14.695

[16]

Ahmed Y. Abdallah, Taqwa M. Al-Khader, Heba N. Abu-Shaab. Attractors of the Klein-Gordon-Schrödinger lattice systems with almost periodic nonlinear part. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022006

[17]

Xuecheng Wang. Global solution for the $3D$ quadratic Schrödinger equation of $Q(u, \bar{u}$) type. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 5037-5048. doi: 10.3934/dcds.2017217

[18]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure and Applied Analysis, 2021, 20 (2) : 737-754. doi: 10.3934/cpaa.2020287

[19]

Pavlos Xanthopoulos, Georgios E. Zouraris. A linearly implicit finite difference method for a Klein-Gordon-Schrödinger system modeling electron-ion plasma waves. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 239-263. doi: 10.3934/dcdsb.2008.10.239

[20]

E. Compaan, N. Tzirakis. Low-regularity global well-posedness for the Klein-Gordon-Schrödinger system on $ \mathbb{R}^+ $. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3867-3895. doi: 10.3934/dcds.2019156

2021 Impact Factor: 1.497

Article outline

[Back to Top]