\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stationary distribution, extinction, density function and periodicity of an n-species competition system with infinite distributed delays and nonlinear perturbations

  • *Corresponding author: Baoquan Zhou

    *Corresponding author: Baoquan Zhou 

This work is supported by the National Natural Science Foundation of China (No. 11871473) and Innovation project for Graduate Students of China University of Petroleum (East China) (No. YCX2021143)

Abstract Full Text(HTML) Figure(10) / Table(1) Related Papers Cited by
  • In this paper, we examine an n-species Lotka-Volterra competition system with general infinite distributed delays and nonlinear perturbations. The stochastic boundedness and extinction are first studied. Then we propose a new $ p $-stochastic threshold method to establish sufficient conditions for the existence of stationary distribution $ \ell(\cdot) $. By solving the corresponding Fokker–Planck equation, we derive the approximate expression of the distribution $ \ell(\cdot) $ around its quasi-positive equilibrium. For the stochastic system with periodic coefficients, we use the $ p $-stochastic threshold method again to obtain the existence of positive periodic solution. Besides, the related competition exclusion and moment estimate of species are shown. Finally, some numerical simulations are provided to substantiate our analytical results.

    Mathematics Subject Classification: Primary: 37L55, 37H05; Secondary: 92B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The diagrams track the number variations of species $ x_i\ (i = 1, 2) $ of deterministic system (1), and of stochastic system (6) with different cases of noise intensity, which include: (a) $ (\sigma_{13}, \sigma_{23}) = (0.2, 0.4) $, (b) $ (\sigma_{13}, \sigma_{23}) = (2, 0.4) $, (c) $ (\sigma_{13}, \sigma_{23}) = (0.2, 2) $ and (d) $ (\sigma_{13}, \sigma_{23}) = (2, 2) $. Other fixed parameters: $ (\sigma_{11}, \sigma_{12}, \sigma_{21}, \sigma_{22}) = (0.01, 0.02, 0.01, 0.02) $. All the iteration intervals are $ [0,600] $, and the number of iterations in the interval $ [0,600] $ is $ 3000000 $

    Figure 2.  The left-hand column shows the number variations of species $ x_i\ (i = 1, 2) $ of deterministic system (1), and of stochastic system (6) on $ t\in[0, 2000] $. The right-hand column shows the corresponding frequency histograms of species $ x_i\ (i = 1, 2) $ on the iteration interval $ [0, 6000] $ with $ 6000000 $ iteration points, and the two marginal densities $ \Phi^{(i)}(x_i)\ (i = 1, 2) $ of the approximate density function $ \Phi(x_1, x_2, y_{1, 2}, y_{2, 1}) $. Fixed parameters: $ (\sigma_{k1}, \sigma_{k2}, \sigma_{k3}) = (0.005, 0.01, 0.03)\ (\forall\ k = 1, 2) $. The iteration interval is $ [0, 6000] $, and the number of iterations in the interval $ [0, 6000] $ is $ 6000000 $

    Figure 3.  The blue, green and black lines separately denote the frequency histogram fitting curves of species $ x_i\ (i = 1, 2) $ of system (6) with the iteration time $ T $ equals to $ 1000 $, $ 2000 $ and $ 4000 $. The orange lines represent the marginal densities $ \Phi^{(i)}(x_i)\ (i = 1, 2) $ of the approximate density function $ \Phi(x_1, x_2, y_{1, 2}, y_{2, 1}) $. All of the parameter values are the same as in Figure 2

    Figure 4.  The left-hand column presents the number variations of species $ x_i\ (i = 1, 2) $ of deterministic system (1), and of stochastic system (6) on $ t\in[0, 2000] $. The right-hand column shows the frequency histograms of species $ x_i\ (i = 1, 2) $ on the iteration interval $ [0, 6000] $ with $ 6000000 $ iteration points, and the two marginal densities $ \Phi^{(i)}(x_i)\ (i = 1, 2) $ of the approximate density function $ \Phi(x_1, x_2, y_{1, 2}, y_{2, 1}) $. Fixed parameters: $ \sigma_{k3} = 0.03 $ and $ \sigma_{kj} = 0\ (\forall\ k, j\in\mathbb{Z}_2) $. The iteration interval and the number of iterations are the same as Figure 2

    Figure 5.  The blue, green and black lines separately represent the frequency histogram fitting curves of species $ x_i\ (i = 1, 2) $ of system (6) with the iteration time $ T $ equals to $ 1000 $, $ 2000 $ and $ 4000 $. The manganese purple lines denote the marginal densities $ \Phi^{(i)}(x_i)\ (i = 1, 2) $ of the approximate density function $ \Phi(x_1, x_2, y_{1, 2}, y_{2, 1}) $. All of the parameter values are the same as in Figure 4

    Figure 6.  The variation trends of species $ x_i\ (i = 1, 2) $ of system (6) with different noise intensities $ (\sigma_{11}, \sigma_{12}, \sigma_{13}, \sigma_{21}, \sigma_{22}, \sigma_{23}) $, which include: (a) $ (0.04, 0.04, 0.04, 0.05, 0.05, 0.05) $, (b) $ (0.04, 0, 0, $ $ 0.05, 0, 0) $, (c) $ (0, 0.04, 0, 0, 0.05, 0) $ and (d) $ (0, 0, 0.04, 0, 0, 0.05) $. All the iteration interval are $ [0,400] $, and the number of iterations in the interval $ [0,400] $ is $ 4000000 $

    Figure 7.  The diagrams track the number variations of species $ x_i\ (i = 1, 2) $ of system (7) with different cases of noise intensity, which include: (a) $ (\sigma_{13}, \sigma_{23}) = (0.2, 0.4) $, (b) $ (\sigma_{13}, \sigma_{23}) = (2, 0.4) $, (c) $ (\sigma_{13}, \sigma_{23}) = (0.2, 2) $ and (d) $ (\sigma_{13}, \sigma_{23}) = (2, 2) $. The other parameters: $ b_1(t) = 1+0.01\sin(\frac{t}{100\pi}) $, $ b_2(t) = 1.2+0.01\sin(\frac{t}{100\pi}) $, $ a_{11}(t) = 0.3+0.01\cos(\frac{t}{100\pi}) $, $ a_{12}(t) = 0.2+0.01\sin(\frac{t}{100\pi}) $, $ a_{21}(t) = 0.3+0.01\sin(\frac{t}{100\pi}) $ and $ a_{22}(t) = 0.4+0.01\cos(\frac{t}{100\pi}) $. The iteration interval and the number of iterations are the same as Figure 1

    Figure 8.  The variation trends of species $ x_i\ (i = 1, 2) $ of deterministic system (1), and of stochastic system (7) with noise intensities $ \sigma_{kj} = 0.005\ (\forall\ k\in\mathbb{Z}_2, j\in\mathbb{Z}_3) $. The other parameter values are the same as in Figure 7. The iteration interval is $ [0, 1000] $, and the number of iterations in the interval $ [0, 1000] $ is $ 1000000 $

    Figure 9.  The variation trends of species $ x_i\ (i = 1, 2) $ of deterministic system (1), and of stochastic system (7) with noise intensities $ \sigma_{kj} = 0.01\ (\forall\ k\in\mathbb{Z}_2, j\in\mathbb{Z}_3) $. The other parameter values, the iteration interval and the number of iterations are the same as in Figure 8

    Figure 10.  The left-hand column shows the variation trends of species $ x_j\ (j\in\mathbb{Z}_3) $ of deterministic system (1), and of stochastic system (6) with noise intensities $ (\sigma_{i1}, \sigma_{i2}, \sigma_{i3}) = (0.01, 0.02, 0.05)\ (\forall\ i\in\mathbb{Z}_3) $. The right-hand column presents the corresponding frequency histograms of species $ x_j\ (j\in\mathbb{Z}_3) $ of system (6) on the iteration interval $ [0,400] $ with $ 400000 $ iteration points. The other parameters: $ (b_1, b_2, b_3) = (2, 2.2, 1.9) $, $ (a_{11}, a_{12}, a_{13}) = (0.4, 0.1, 0.05) $, $ (a_{21}, a_{22}, a_{23}) = (0.1, 0.5, 0.05) $, $ (a_{31}, a_{32}, a_{33}) = (0.1, 0.1, 0.8) $ and $ \alpha_{ik} = 1\ (\forall\ i\in\mathbb{Z}_3, k\in\mathbb{S}_3^i) $. The iteration interval is $ [0,400] $, and the number of iterations in the interval $ [0,400] $ is $ 400000 $

    Table 1.  List of the initial value and biological parameters of two-species competition system (6)

    Parameter Value Source
    $ (b_1, b_2, a_{11}, a_{12}, a_{21}, a_{22}) $ $ (1, 1.2, 0.3, 0.2, 0.3, 0.4) $ [26]
    $ (x_1(0), x_2(0)) $ $ (1.5, 2) $ [26]
    $ (y_{1, 2}(0), y_{2, 1}(0), \alpha_{12}, \alpha_{21}) $ $ (0.8, 0.2, 1, 1) $ Assumed
     | Show Table
    DownLoad: CSV
  • [1] Y. CaiJ. JiaoZ. GuiY. Liu and W. Wang, Environmental variability in a stochastic epidemic model, Appl. Math. Comput., 329 (2018), 210-226.  doi: 10.1016/j.amc.2018.02.009.
    [2] Y. CaiY. Kang and W. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl. Math. Comput., 305 (2017), 221-240.  doi: 10.1016/j.amc.2017.02.003.
    [3] J. Caperon, Time lag in population growth response of isochrysis galbana to a variable nitrate environment, Ecology., 50 (1969), 188-192. 
    [4] S. ChakrabortyS. ChatterjeeE. Venturino and J. Chattopad-hyay, Recurring plankton bloom dynamics modeled via toxin-producing phytoplankton, J. Biol. Phys., 33 (2007), 271-290. 
    [5] F. Chen, Average conditions for permanence and extinction in nonautonomous Gilpin-Ayala competition model, Nonlinear Anal. Real World Appl., 7 (2006), 895–915. doi: 10.1016/j.nonrwa.2005.04.007.
    [6] Q. Chen, A new idea on density function and covariance matrix analysis of a stochastic SEIS epidemic model with degenerate diffusion, Appl. Math. Lett., 103 (2020), 106200, 6 pp. doi: 10.1016/j.aml.2019.106200.
    [7] J. M. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics, in Lecture Notes in Biomathematics, Springer-Verlag, Berlin-New York, 1977.
    [8] F. M. de Oca and L. Perez, Extinction in nonautonomous competitive Lotka-Volterra systems with infinite delay, Nonlinear Anal., 75 (2012), 758-768.  doi: 10.1016/j.na.2011.09.009.
    [9] B. DubeySa jan and A. Kumar, Stability switching and chaos in a multiple delayed prey-predator model with fear effect and anti-predator behavior, Math. Comput. Simulat., 188 (2021), 164-192.  doi: 10.1016/j.matcom.2021.03.037.
    [10] T. Faria, Sharp conditions for global stability of Lotka-Volterra systems with distributed delays, J. Differ. Equ., 246 (2009), 4391-4404.  doi: 10.1016/j.jde.2009.02.011.
    [11] M. Farkas and H. Freedman, Stability conditions for two predator one prey systems, Acta. Appl. Math., 14 (1989), 3-10.  doi: 10.1007/BF00046669.
    [12] M. Gao and D. Jiang, Stationary distribution of a chemostat model with distributed delay and stochastic perturbations, Appl. Math. Lett., 123 (2022), Paper No. 107585, 7 pp. doi: 10.1016/j.aml.2021.107585.
    [13] C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, Springer Berlin, 1983.
    [14] K. Golpalsamy, Globally asymptotic stability in a periodic Lotka-Volterra system, J. Austral. Math. Soc. Ser. B, 27 (1985), 66-72.  doi: 10.1017/S0334270000004768.
    [15] K. Gopalsamy, Time lags and global stability in two species competition, Bull. Math. Biol., 42 (1980), 729-737. 
    [16] B. Han, D. Jiang, T. Hayat, A. Alsaedi and B. Ahmad, Stationary distribution and extinction of a stochastic staged progression AIDS model with staged treatment and second-order perturbation, Chaos. Soliton. Fract., 140 (2020), 110238, 19 pp. doi: 10.1016/j.chaos.2020.110238.
    [17] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525-546.  doi: 10.1137/S0036144500378302.
    [18] D. J. HighamX. Mao and C. Yuan, Almost sure and moment exponential stability in the numerical simulation of stochastic differential equations, SIAM J. Numer. Anal., 45 (2007), 592-609.  doi: 10.1137/060658138.
    [19] J. Hofbauer and  K. SigmundThe Theory of Evolution and Dynamical Systems, Cambridge University Press, Cambridge, 1988. 
    [20] J. Hofbauer and  K. SigmundEvolutionary Games and Population Dynamics, Cambridge University Press, 1998.  doi: 10.1017/CBO9781139173179.
    [21] J. HuZ. LiuL. Wang and R. Tan, Extinction and stationary distribution of a competition system with distributed delays and higher order coupled noises, Math. Biosci. Eng., 17 (2020), 3240-3251.  doi: 10.3934/mbe.2020184.
    [22] N. Ikeda and S. Watanade, A comparison theorem for solutions of stochastic differential equations and its applications, Osaka Math. J., 14 (1977), 619-633. 
    [23] L. Imhof and S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, J. Diff. Equ., 217 (2005), 26-53.  doi: 10.1016/j.jde.2005.06.017.
    [24] C. JiX. Yang and Y. Li, Permanence, extinction and periodicity to a stochastic competitive model with infinite distributed delays, J. Dyn. Differ. Equ., 33 (2021), 135-176.  doi: 10.1007/s10884-020-09850-7.
    [25] C. JiX. Yang and Y. Li, Periodic solutions for SDEs through upper and lower solutions, Discre. Contin. Dyn. Syst. B., 25 (2020), 4737-4754.  doi: 10.3934/dcdsb.2020122.
    [26] D. JiangC. JiX. Li and D. O'Regan, Analysis of autonomous Lotka-Volterra competition systems with random perturbation, J. Math. Anal. Appl., 390 (2012), 582-595.  doi: 10.1016/j.jmaa.2011.12.049.
    [27] X. Jiang and Y. Li, Wong-Zakai approximations and periodic solutions in distribution of dissipative stochastic differential equations, J. Differ. Equ., 274 (2020), 652-765.  doi: 10.1016/j.jde.2020.10.022.
    [28] R. Khasminskii, Stochastic Stability of Differential Equations, 2$^{nd}$ edition, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-23280-0.
    [29] M. A. Krasnosel'skii, Translations Along Trajectories of Differential Equations, AMS Trans. Math. Monographs, 19, 1968.
    [30] B. LiG. S. K. Wolkowicz and Y. Kuang, Global asymptotic behavior of a chemostat model with two perfectly complementary resources and distributed delay, SIAM J. Appl. Math., 60 (2000), 2058-2086.  doi: 10.1137/S0036139999359756.
    [31] Q. Li, Z. Liu and S. Yuan, Cross-diffusion induced Turing instability for a competition model with saturation effect, Appl. Math. Comput., 347 (2019), 64–77. doi: 10.1016/j.amc.2018.10.071.
    [32] S. LiX. Liao and C. Li, Hopf bifurcation in a Volterra prey-predator model with strong kernel, Chaos. Soliton. Fract., 22 (2004), 713-722.  doi: 10.1016/j.chaos.2004.02.048.
    [33] X. LiA. GrayD. Jiang and X. Mao, Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching, J. Math. Anal. Appl., 376 (2011), 11-28.  doi: 10.1016/j.jmaa.2010.10.053.
    [34] M. Liu and Y. Zhu, Stationary distribution and ergodicity of a stochastic hybrid competition model with L$\acute e$vy jumps, Nonlinear Anal. Hybrid Syst., 30 (2018), 225-239.  doi: 10.1016/j.nahs.2018.05.002.
    [35] Q. Liu and D. Jiang, Stationary distribution and extinction of a stochastic predator-prey model with distributed delay, Appl. Math. Lett., 78 (2018), 79-87.  doi: 10.1016/j.aml.2017.11.008.
    [36] Q. Liu and D. Jiang, Periodic solution and stationary distribution of stochastic predator-prey models with higher-order perturbation, J. Nonlinear Sci., 28 (2018), 423-442.  doi: 10.1007/s00332-017-9413-2.
    [37] Q. LiuD. JiangT. Hayat and A. Alsaedi, Stationary distribution and extinction of a stochastic HIV-1 infection model with distributed delay and logistic growth, J. Nonlinear. Sci., 30 (2020), 369-395.  doi: 10.1007/s00332-019-09576-x.
    [38] Q. LiuD. JiangT. Hayat and A. Alsaedi, Dynamics of a stochastic predator-prey model with stage structure for predator and Holling type II functional response, J. Nonlinear. Sci., 28 (2018), 1151-1187.  doi: 10.1007/s00332-018-9444-3.
    [39] X. LvX. Meng and X. Wang, Extinction and stationary distribution of an impulsive stochastic chemostat model with nonlinear perturbation, Chaos. Soliton. Fract., 110 (2018), 273-279.  doi: 10.1016/j.chaos.2018.03.038.
    [40] C. Lu, H. Liu and D. Zhang, Dynamics and simulations of a second order stochastically perturbed SEIQV epidemic model with saturated incidence rate, Chaos. Soliton. Fract., 152 (2021), Paper No. 111312, 21 pp. doi: 10.1016/j.chaos.2021.111312.
    [41] Z. MaY. Zhou and  C. LiQualitative and Stability Methods for Ordinary Differential Equations, Science Press, Beijing, (In Chinese), 2015. 
    [42] N. Macdonald, Time Lags in Biological Models in: Lecture Notes in Biomathematics, Springer-Verlag, Berlin-New York, 1978.
    [43] X. Mao, Stochastic Differential Equations and Applications, Chichester: Horwood Publishing, 1997.
    [44] X. Mao, Convergence rates of the truncated Euler-Maruyama method for stochastic differential equations, J. Comput. Appl. Math., 296 (2016), 362-375.  doi: 10.1016/j.cam.2015.09.035.
    [45] X. Mao and X. Li, Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation, Discre. Contin. Dyn. Syst., 24 (2009), 523-545.  doi: 10.3934/dcds.2009.24.523.
    [46] X. MaoG. Marion and E. Renshaw, Environmental brownian noise suppresses explosions in population dynamics, Stoch. Pro. Appl., 97 (2002), 95-110.  doi: 10.1016/S0304-4149(01)00126-0.
    [47] R. M. May, Time-delay versus stability in population models with two and three trophic levels, Ecology., 54 (1973), 315-325. 
    [48] R. M. MayStability and Complexity in Model Ecosystems, Princeton University Press, Princeton, 2001. 
    [49] G. N. Milštein, Approximate integration of stochastic differential equations, Teor. Verojatnost. i Primenen., 19 (1974), 583-588. 
    [50] X. MuD. JiangT. HayatA. Alsaedi and B. Ahmad, Dynamical behavior of a stochastic Nicholson's blowflies model with distributed delay and degenerate diffusion, Nonlinear. Dyn., 103 (2021), 2081-2096. 
    [51] J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-662-08539-4.
    [52] D. H. Nguyen and G. Yin, Coexistence and exclusion of stochastic competitive Lotka-Volterra models, J. Differ. Equ., 262 (2017), 1192-1225.  doi: 10.1016/j.jde.2016.10.005.
    [53] D. H. NguyenG. Yin and C. Zhu, Long-term analysis of a stochastic SIRS model with general incidence rates, SIAM J. Appl. Math., 80 (2020), 814-838.  doi: 10.1137/19M1246973.
    [54] W. NingZ. LiuL. Wang and R. Hua, Analysis of a stochastic competitive model with saturation effect and distributed delay, Meth. Comput. Appl. Prob., 23 (2021), 1435-1459.  doi: 10.1007/s11009-020-09824-8.
    [55] S. Pan, Q. Zhang and A. Meyer-Baese, Stationary distribution of a stochastic vegetation-water system with reaction-diffusion, Appl. Math. Lett., 123 (2022), 107589, 7 pp. doi: 10.1016/j.aml.2021.107589.
    [56] E. Platen, An introduction to numerical methods for stochastic differential equations, Acta Numerica., 8 (1999), 197-246.  doi: 10.1017/S0962492900002920.
    [57] H. Qi and X. Meng, Threshold behavior of a stochastic predator-prey system with prey refuge and fear effect, Appl. Math. Lett., 113 (2021), Paper No. 106846, 7 pp. doi: 10.1016/j.aml.2020.106846.
    [58] H. Qi, X. Meng, T. Hayat and A. Hobiny, Stationary distribution of a stochastic predator-prey model with hunting cooperation, Appl. Math. Lett., 124 (2022), Paper No. 107662, 8 pp. doi: 10.1016/j.aml.2021.107662.
    [59] K. Qi and D. Jiang, The impact of virus carrier screening and actively seeking treatment on dynamical behavior of a stochastic HIV/AIDS infection model, Appl. Math. Model., 85 (2020), 378-404.  doi: 10.1016/j.apm.2020.03.027.
    [60] R. Rao and X. Yang, et al., Impulsive stabilization and stability analysis for Gilpin-Ayala competition model involved in harmful species via LMI approach and variational methods, Math. Comput. Simulat., 188 (2021), 571-590.  doi: 10.1016/j.matcom.2021.04.025.
    [61] H. Roozen, An asymptotic solution to a two-dimensional exit problem arising in population dynamics, SIAM J. Appl. Math., 49 (1989), 1793-1810.  doi: 10.1137/0149110.
    [62] S. Sabanis, Euler approximations with varying coefficients: The case of superlinearly growing diffusion coefficients, Ann. Appl. Probab., 26 (2016), 2083-2105.  doi: 10.1214/15-AAP1140.
    [63] M. SongW. ZuoD. Jiang and T. Hayat, Stationary distribution and ergodicity of a stochastic cholera model with multiple pathways of transmission, J. Franklin. Inst., 357 (2020), 10773-10798.  doi: 10.1016/j.jfranklin.2020.04.061.
    [64] X. SunW. ZuoD. Jiang and T. Hayat, Unique stationary distribution and ergodicity of a stochastic Logistic model with distributed delay, Phys. A., 512 (2018), 864-881.  doi: 10.1016/j.physa.2018.08.048.
    [65] B. Tang and Y. Xiao, Bifurcation analysis of a predator-prey model with anti-predator behaviour, Chaos. Soliton. Fract., 70 (2015), 58-68.  doi: 10.1016/j.chaos.2014.11.008.
    [66] V. Volterra, Remarques sur la note de M. R$\acute e$gnier et lle Lambin (Etude d'un casd'antagonisme microbien), C. R. Acad. Sci., 199 (1934), 1684-1686. 
    [67] H. Wang, D. Jiang, T. Hayat, A. Alsaedi and B. Ahmad, Stationary distribution of stochastic NP ecological model under regime switching, Physica A., 549 (2020), 124064, 11 pp. doi: 10.1016/j.physa.2019.124064.
    [68] X. WangH. Liu and C. Xu, Hopf bifurcations in a predator-prey system of population allelopathy with a discrete delay and a distributed delay, Nonlinear Dyn., 69 (2012), 2155-2167.  doi: 10.1007/s11071-012-0416-0.
    [69] D. XuY. Huang and Z. Yang, Existence theorems for periodic Markov process and stochastic functional differential equations, Discrete. Contin. Dyn. Syst., 24 (2009), 1005-1023.  doi: 10.3934/dcds.2009.24.1005.
    [70] G. Yin and C. Zhu, Hybrid Switching Diffusions: Properties and Applications, Springer-Verlag, New York, 2010. doi: 10.1007/978-1-4419-1105-6.
    [71] M. Zeeman, Extinction in competitive Lotka-Volterra systems, Proc. Amer. Math. Soc., 123 (1995), 87-96.  doi: 10.1090/S0002-9939-1995-1264833-2.
    [72] H. ZhangY. CaiS. Fu and W. Wang, Impact of the fear effect in a prey-predator model incorporating a prey refuge, Appl. Math. Comput., 356 (2019), 328-337.  doi: 10.1016/j.amc.2019.03.034.
    [73] L. Zhang and Z. Teng, N-species non-autonomous Lotka-Volterra competitive systems with delays and impulsive perturbations, Nonlinear Anal. Real World Appl., 12 (2011), 3152-3169.  doi: 10.1016/j.nonrwa.2011.05.015.
    [74] X. Zhang, Global dynamics of a stochastic avian-human influenza epidemic model with logistic growth for avian population, Nonlinear. Dyn., 90 (2017), 2331-2343.  doi: 10.1007/s11071-017-3806-5.
    [75] X. Zhang and D. Jiang, Periodic solutions of a stochastic food-limited mutualism model, Methodol. Comput. Appl. Prob., 22 (2020), 267-278.  doi: 10.1007/s11009-019-09697-6.
    [76] S. ZhaoS. Yuan and H. Wang, Threshold behavior in a stochastic algal growth model with stoichiometric constraints and seasonal variation, J. Differ. Equ., 268 (2020), 5113-5139.  doi: 10.1016/j.jde.2019.11.004.
    [77] Y. Zhao and D. Jiang, The threshold of a stochastic SIRS epidemic model with saturated incidence, Appl. Math. Lett., 34 (2014), 90-93.  doi: 10.1016/j.aml.2013.11.002.
    [78] Y. ZhaoS. Yuan and J. Ma, Survival and stationary distribution analysis of a stochastic competitive model of three species in a polluted environment, Bullet. Math. Biol., 77 (2015), 1285-1326.  doi: 10.1007/s11538-015-0086-4.
    [79] B. Zhou, B. Han, D. Jiang, T. Hayat and A. Alsaedi, Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching, Appl. Math. Comput., 410 (2021), 126388, 35 pp. doi: 10.1016/j.amc.2021.126388.
    [80] B. Zhou, X. Zhang and D. Jiang, Dynamics and density function analysis of a stochastic SVI epidemic model with half saturated incidence rate, Chaos. Soliton. Fract., 137 (2020), 109865, 11 pp. doi: 10.1016/j.chaos.2020.109865.
    [81] L. Zu, D. Jiang, D. O'Regan and T. Hayat, Dynamic analysis of a stochastic toxin-mediated predator-prey model in aquatic environments, J. Math. Anal. Appl., 504 (2021), Paper No. 125424, 25 pp. doi: 10.1016/j.jmaa.2021.125424.
    [82] L. ZuD. JiangD. O'ReganT. Hayat and B. Ahmad, Ergodic property of a Lotka-Volterra predator-prey model with white noise higher order perturbation under regime switching, Appl. Math. Comput., 330 (2018), 93-102.  doi: 10.1016/j.amc.2018.02.035.
  • 加载中

Figures(10)

Tables(1)

SHARE

Article Metrics

HTML views(890) PDF downloads(344) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return