doi: 10.3934/dcdsb.2022082
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Hopf bifurcation for a predator-prey model with age structure and ratio-dependent response function incorporating a prey refuge

School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China

*Corresponding author: Jixun Chu

Received  May 2021 Revised  March 2022 Early access May 2022

Fund Project: The second author is supported by NSFC grant N0.11280125

In this paper, a predator-prey model with age structure and ratio-dependent response function incorporating a prey refuge is investigated. The model is formulated as an abstract non-densely defined Cauchy problem and a sufficient condition for the existence of the positive age-related equilibrium is given. Then using the integral semigroup theory and the Hopf bifurcation theory for semilinear equations with non-dense domain, it is shown that Hopf bifurcation occurs at the positive age-related equilibrium. Numerical simulations are performed to validate theoretical results and sensitivity analyses are presented. The results show that the prey refuge has a stabilizing effect, that is, the prey refuge is an important factor to maintain the balance between prey and predator population.

Citation: Tongtong Chen, Jixun Chu. Hopf bifurcation for a predator-prey model with age structure and ratio-dependent response function incorporating a prey refuge. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2022082
References:
[1]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence, J. Theor. Biol., 139 (1989), 311-326. 

[2]

X. DuanJ. Yin and X. Li, Global Hopf bifurcation of an SIRS epidemic model with age-dependent recovery, Chaos Solitons Fractals, 104 (2017), 613-624.  doi: 10.1016/j.chaos.2017.09.029.

[3]

A. DucrotZ. Liu and P. Magal, Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems, J. Math. Anal. Appl., 341 (2008), 501-518.  doi: 10.1016/j.jmaa.2007.09.074.

[4]

H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker, New York, 1980.

[5]

X. FuZ. Liu and P. Magal, Hopf bifurcation in an age-structured population model with two delays, Commun. Pure Appl. Anal., 14 (2015), 657-676.  doi: 10.3934/cpaa.2015.14.657.

[6]

L. N. Guin, S. Djilali and S. Chakravarty, Cross-diffusion-driven instability in an interacting species model with prey refuge, Chaos Solitons Fractals, 153 (2021), Paper No. 111501, 16 pp. doi: 10.1016/j.chaos.2021.111501.

[7]

Z. GuoH. Huo and H. Xiang, Bifurcation analysis of an age-structured alcoholism model, J. Biol. Dyn., 12 (2018), 1009-1033.  doi: 10.1080/17513758.2018.1535668.

[8]

Z. GuoH. Huo and H. Xiang, Hopf bifurcation of an age-structured HIV infection model with logistic target-cell growth, J. Biol. Dyn., 13 (2019), 362-384.  doi: 10.1080/17513758.2019.1602171.

[9]

R. Han, L. N. Guin and B. Dai, Consequences of refuge and diffusion in a spatiotemporal predator-prey model, Nonlinear Anal. Real World Appl., 60 (2021), 103311, 36 pp. doi: 10.1016/j.nonrwa.2021.103311.

[10]

M. M. Haque and S. Sarwardi, Dynamics of a harvested prey-predator model with prey refuge dependent on both species, Intl. J. Bif. Chaos, 28 (2018), 1830040, 16 pp. doi: 10.1142/S0218127418300409.

[11]

G. W. Harrison, Global stability of predator-prey interactions, J. Math. Biol., 8 (1979), 159-171.  doi: 10.1007/BF00279719.

[12]

X. JiangZ. She and S. Ruan, Global dynamics of a predator-prey system with density-dependent mortality and ratio-dependent functional response, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 1967-1990.  doi: 10.3934/dcdsb.2020041.

[13]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol., 36 (1998), 389-406.  doi: 10.1007/s002850050105.

[14]

B. Li and Y. Kuang, Heteroclinic bifurcation in the Michaelis-Menten-type ratio-dependent predator-prey system, SIAM J. Appl. Math., 67 (2007), 1453-1464.  doi: 10.1137/060662460.

[15]

X. LiG. HuX. Li and Z. Feng, Positive steady states of a ratio-dependent predator-prey system with cross-diffusion, Math. Biosci. Eng., 16 (2019), 6753-6768.  doi: 10.3934/mbe.2019337.

[16]

Z. Liu and N. Li, Stability and bifurcation in a predator-prey model with age structure and delays, J. Nonlinear Sci., 25 (2015), 937-957.  doi: 10.1007/s00332-015-9245-x.

[17]

Z. Liu and P. Magal, Bogdanov-Takens bifurcation in a predator-prey model with age structure, Z. Angew. Math. Phys., 72 (2021), 24 pp. doi: 10.1007/s00033-020-01434-1.

[18]

Z. LiuP. Magal and S. Ruan, Hopf bifurcation for non-densely defined Cauchy problems, Z. Angew. Math. Phys., 62 (2011), 191-222.  doi: 10.1007/s00033-010-0088-x.

[19]

Z. LiuP. Magal and S. Ruan, Normal forms for semilinear equations with non-dense domain with applications to age structured models, J. Differential Equations, 257 (2014), 921-1011.  doi: 10.1016/j.jde.2014.04.018.

[20]

Z. LiuP. Magal and S. Ruan, Oscillations in age-structured models of consumer-resource mutualisms, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 537-555.  doi: 10.3934/dcdsb.2016.21.537.

[21]

Z. Liu, P. Magal and D. Xiao, Bogdanov-Takens bifurcation in a predator-prey model, Z. Angew. Math. Phys., 67 (2016), 29 pp. doi: 10.1007/s00033-016-0724-1.

[22]

Z. LiuH. Tang and P. Magal, Hopf bifurcation for a spatially and age structured population dynamics model, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1735-1757.  doi: 10.3934/dcdsb.2015.20.1735.

[23]

Z. Liu and R. Yuan, Zero-Hopf bifurcation for an infection-age structured epidemic model with a nonlinear incidence rate, Sci. China Math., 60 (2017), 1371-1398.  doi: 10.1007/s11425-016-0371-8.

[24]

Z. MaW. LiY. ZhaoW. WangH. Zhang and Z. Li, Effects of prey refuges on a predator-prey model with a class of functional responses: The role of refuges, Math. Biosci., 218 (2009), 73-79.  doi: 10.1016/j.mbs.2008.12.008.

[25]

P. Magal, Compact attractors for time-periodic age-structured population models, Electron. J. Differential Equations, 2001 (2001), 1-35. 

[26]

P. Magal and S. Ruan, Center Manifolds for Semilinear Equations with Non-Dense Domain and Applications on Hopf Bifurcation in Age Structured Models, Mem. Amer. Math. Soc. 2009. doi: 10.1090/S0065-9266-09-00568-7.

[27]

P. Magal and S. Ruan, On semilinear Cauchy problems with non-dense domain, Adv. Differential Equations, 14 (2009), 1041-1084. 

[28]

J. Maynard-Smith, Models in Ecology, CUP Archive, 1978.

[29]

H. MollaM. S. Rahman and S. Sarwardi, Dynamics of a predator-prey model with Holling type Ⅱ functional response incorporating a prey refuge depending on both the species, Int. J. Nonlinear Sci. Numer. Simul., 20 (2019), 1-16.  doi: 10.1515/ijnsns-2017-0224.

[30]

D. Mukherjee and C. Maji, Bifurcation analysis of a Holling type Ⅱ predator-prey model with refuge, Chinese J. Phys., 65 (2020), 153-162.  doi: 10.1016/j.cjph.2020.02.012.

[31]

R. Peng, Qualitative analysis on a diffusive and ratio-dependent predator-prey model, IMA J. Appl. Math., 78 (2013), 566-586.  doi: 10.1093/imamat/hxr066.

[32]

S. RuanY. Tang and W. Zhang, Versal unfoldings of predator-prey systems with ratio-dependent functional response, J. Differential Equations, 249 (2010), 1410-1435.  doi: 10.1016/j.jde.2010.06.015.

[33]

G. D. Ruxton, Short term refuge use and stability of predator-prey models, Theor. Popul. Biol., 47 (1995), 1-17. 

[34]

N. SkP. K. Tiwari and S. Pal, A delay nonautonomous model for the impacts of fear and refuge in a three species food chain model with hunting cooperation, Math. Comput. Simulation, 192 (2022), 136-166.  doi: 10.1016/j.matcom.2021.08.018.

[35]

N. SkP. K. TiwariS. Pal and M. Martcheva, A delay non-autonomous model for the combined effects of fear, prey refuge and additional food for predator, J. Biol. Dyn., 15 (2021), 580-622.  doi: 10.1080/17513758.2021.2001583.

[36]

H. Tang and Z. Liu, Hopf bifurcation for a predator-prey model with age structure, Appl. Math. Model., 40 (2016), 726-737.  doi: 10.1016/j.apm.2015.09.015.

[37]

H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differential Integral Equations, 3 (1990), 1035-1066. 

[38]

Z. Wang and Z. Liu, Hopf bifurcation of an age-structured compartmental pest-pathogen model, J. Math. Anal. Appl., 385 (2012), 1134-1150.  doi: 10.1016/j.jmaa.2011.07.038.

[39]

D. Yan, H. Cao, X. Xu and X. Wang, Hopf bifurcation for a predator-prey model with age structure, Phys. A, 526 (2019), 120953, 15 pp. doi: 10.1016/j.physa.2019.04.189.

[40]

P. Yang, Hopf bifurcation of an age-structured prey-predator model with Holling type Ⅱ functional response incorporating a prey refuge, Nonlinear Anal. Real World Appl., 49 (2019), 368-385.  doi: 10.1016/j.nonrwa.2019.03.014.

[41]

P. Yang and Y. Wang, Existence and properties of Hopf bifurcation in an age-dependent predation system with prey harvesting, Commun. Nonlinear Sci. Numer. Simul., 91 (2020), 105395, 40 pp. doi: 10.1016/j.cnsns.2020.105395.

[42]

P. Yang and Y. Wang, Hopf bifurcation of an infection-age structured eco-epidemiological model with saturation incidence, J. Math. Anal. Appl., 477 (2019), 398-419.  doi: 10.1016/j.jmaa.2019.04.038.

[43]

P. Yang and Y. Wang, Hopf-zero bifurcation in an age-dependent predator-prey system with Monod-Haldane functional response comprising strong Allee effect, J. Differential Equations, 269 (2020), 9583-9618.  doi: 10.1016/j.jde.2020.06.048.

[44]

P. Yang and Y. Wang, Periodic solutions of a delayed eco-epidemiological model with infection-age structure and Holling type Ⅱ functional response, Intl. J. Bif. Chaos, 30 (2020), 2050011, 20 pp. doi: 10.1142/S021812742050011X.

[45]

Y. Yang and T. Zhang, Dynamic analysis of a modified stochastic predator-prey system with general ratio-dependent functional response, Bull. Korean Math. Soc., 53 (2016), 103-117.  doi: 10.4134/BKMS.2016.53.1.103.

[46]

X. Zhang and Z. Liu, Bifurcation analysis of an age structured HIV infection model with both virus-to-cell and cell-to-cell transmissions, Intl. J. Bif. Chaos, 28 (2018), 1850109, 20 pp. doi: 10.1142/S0218127418501092.

[47]

X. Zhang and Z. Liu, Hopf bifurcation for a susceptible-infective model with infection-age structure, J. Nonlinear Sci., 30 (2020), 317-367.  doi: 10.1007/s00332-019-09575-y.

[48]

X. Zhang and Z. Liu, Periodic oscillations in age-structured ratio-dependent predator-prey model with Michaelis-Menten type functional response, Phys. D, 389 (2019), 51-63.  doi: 10.1016/j.physd.2018.10.002.

show all references

References:
[1]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence, J. Theor. Biol., 139 (1989), 311-326. 

[2]

X. DuanJ. Yin and X. Li, Global Hopf bifurcation of an SIRS epidemic model with age-dependent recovery, Chaos Solitons Fractals, 104 (2017), 613-624.  doi: 10.1016/j.chaos.2017.09.029.

[3]

A. DucrotZ. Liu and P. Magal, Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems, J. Math. Anal. Appl., 341 (2008), 501-518.  doi: 10.1016/j.jmaa.2007.09.074.

[4]

H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker, New York, 1980.

[5]

X. FuZ. Liu and P. Magal, Hopf bifurcation in an age-structured population model with two delays, Commun. Pure Appl. Anal., 14 (2015), 657-676.  doi: 10.3934/cpaa.2015.14.657.

[6]

L. N. Guin, S. Djilali and S. Chakravarty, Cross-diffusion-driven instability in an interacting species model with prey refuge, Chaos Solitons Fractals, 153 (2021), Paper No. 111501, 16 pp. doi: 10.1016/j.chaos.2021.111501.

[7]

Z. GuoH. Huo and H. Xiang, Bifurcation analysis of an age-structured alcoholism model, J. Biol. Dyn., 12 (2018), 1009-1033.  doi: 10.1080/17513758.2018.1535668.

[8]

Z. GuoH. Huo and H. Xiang, Hopf bifurcation of an age-structured HIV infection model with logistic target-cell growth, J. Biol. Dyn., 13 (2019), 362-384.  doi: 10.1080/17513758.2019.1602171.

[9]

R. Han, L. N. Guin and B. Dai, Consequences of refuge and diffusion in a spatiotemporal predator-prey model, Nonlinear Anal. Real World Appl., 60 (2021), 103311, 36 pp. doi: 10.1016/j.nonrwa.2021.103311.

[10]

M. M. Haque and S. Sarwardi, Dynamics of a harvested prey-predator model with prey refuge dependent on both species, Intl. J. Bif. Chaos, 28 (2018), 1830040, 16 pp. doi: 10.1142/S0218127418300409.

[11]

G. W. Harrison, Global stability of predator-prey interactions, J. Math. Biol., 8 (1979), 159-171.  doi: 10.1007/BF00279719.

[12]

X. JiangZ. She and S. Ruan, Global dynamics of a predator-prey system with density-dependent mortality and ratio-dependent functional response, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 1967-1990.  doi: 10.3934/dcdsb.2020041.

[13]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol., 36 (1998), 389-406.  doi: 10.1007/s002850050105.

[14]

B. Li and Y. Kuang, Heteroclinic bifurcation in the Michaelis-Menten-type ratio-dependent predator-prey system, SIAM J. Appl. Math., 67 (2007), 1453-1464.  doi: 10.1137/060662460.

[15]

X. LiG. HuX. Li and Z. Feng, Positive steady states of a ratio-dependent predator-prey system with cross-diffusion, Math. Biosci. Eng., 16 (2019), 6753-6768.  doi: 10.3934/mbe.2019337.

[16]

Z. Liu and N. Li, Stability and bifurcation in a predator-prey model with age structure and delays, J. Nonlinear Sci., 25 (2015), 937-957.  doi: 10.1007/s00332-015-9245-x.

[17]

Z. Liu and P. Magal, Bogdanov-Takens bifurcation in a predator-prey model with age structure, Z. Angew. Math. Phys., 72 (2021), 24 pp. doi: 10.1007/s00033-020-01434-1.

[18]

Z. LiuP. Magal and S. Ruan, Hopf bifurcation for non-densely defined Cauchy problems, Z. Angew. Math. Phys., 62 (2011), 191-222.  doi: 10.1007/s00033-010-0088-x.

[19]

Z. LiuP. Magal and S. Ruan, Normal forms for semilinear equations with non-dense domain with applications to age structured models, J. Differential Equations, 257 (2014), 921-1011.  doi: 10.1016/j.jde.2014.04.018.

[20]

Z. LiuP. Magal and S. Ruan, Oscillations in age-structured models of consumer-resource mutualisms, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 537-555.  doi: 10.3934/dcdsb.2016.21.537.

[21]

Z. Liu, P. Magal and D. Xiao, Bogdanov-Takens bifurcation in a predator-prey model, Z. Angew. Math. Phys., 67 (2016), 29 pp. doi: 10.1007/s00033-016-0724-1.

[22]

Z. LiuH. Tang and P. Magal, Hopf bifurcation for a spatially and age structured population dynamics model, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1735-1757.  doi: 10.3934/dcdsb.2015.20.1735.

[23]

Z. Liu and R. Yuan, Zero-Hopf bifurcation for an infection-age structured epidemic model with a nonlinear incidence rate, Sci. China Math., 60 (2017), 1371-1398.  doi: 10.1007/s11425-016-0371-8.

[24]

Z. MaW. LiY. ZhaoW. WangH. Zhang and Z. Li, Effects of prey refuges on a predator-prey model with a class of functional responses: The role of refuges, Math. Biosci., 218 (2009), 73-79.  doi: 10.1016/j.mbs.2008.12.008.

[25]

P. Magal, Compact attractors for time-periodic age-structured population models, Electron. J. Differential Equations, 2001 (2001), 1-35. 

[26]

P. Magal and S. Ruan, Center Manifolds for Semilinear Equations with Non-Dense Domain and Applications on Hopf Bifurcation in Age Structured Models, Mem. Amer. Math. Soc. 2009. doi: 10.1090/S0065-9266-09-00568-7.

[27]

P. Magal and S. Ruan, On semilinear Cauchy problems with non-dense domain, Adv. Differential Equations, 14 (2009), 1041-1084. 

[28]

J. Maynard-Smith, Models in Ecology, CUP Archive, 1978.

[29]

H. MollaM. S. Rahman and S. Sarwardi, Dynamics of a predator-prey model with Holling type Ⅱ functional response incorporating a prey refuge depending on both the species, Int. J. Nonlinear Sci. Numer. Simul., 20 (2019), 1-16.  doi: 10.1515/ijnsns-2017-0224.

[30]

D. Mukherjee and C. Maji, Bifurcation analysis of a Holling type Ⅱ predator-prey model with refuge, Chinese J. Phys., 65 (2020), 153-162.  doi: 10.1016/j.cjph.2020.02.012.

[31]

R. Peng, Qualitative analysis on a diffusive and ratio-dependent predator-prey model, IMA J. Appl. Math., 78 (2013), 566-586.  doi: 10.1093/imamat/hxr066.

[32]

S. RuanY. Tang and W. Zhang, Versal unfoldings of predator-prey systems with ratio-dependent functional response, J. Differential Equations, 249 (2010), 1410-1435.  doi: 10.1016/j.jde.2010.06.015.

[33]

G. D. Ruxton, Short term refuge use and stability of predator-prey models, Theor. Popul. Biol., 47 (1995), 1-17. 

[34]

N. SkP. K. Tiwari and S. Pal, A delay nonautonomous model for the impacts of fear and refuge in a three species food chain model with hunting cooperation, Math. Comput. Simulation, 192 (2022), 136-166.  doi: 10.1016/j.matcom.2021.08.018.

[35]

N. SkP. K. TiwariS. Pal and M. Martcheva, A delay non-autonomous model for the combined effects of fear, prey refuge and additional food for predator, J. Biol. Dyn., 15 (2021), 580-622.  doi: 10.1080/17513758.2021.2001583.

[36]

H. Tang and Z. Liu, Hopf bifurcation for a predator-prey model with age structure, Appl. Math. Model., 40 (2016), 726-737.  doi: 10.1016/j.apm.2015.09.015.

[37]

H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differential Integral Equations, 3 (1990), 1035-1066. 

[38]

Z. Wang and Z. Liu, Hopf bifurcation of an age-structured compartmental pest-pathogen model, J. Math. Anal. Appl., 385 (2012), 1134-1150.  doi: 10.1016/j.jmaa.2011.07.038.

[39]

D. Yan, H. Cao, X. Xu and X. Wang, Hopf bifurcation for a predator-prey model with age structure, Phys. A, 526 (2019), 120953, 15 pp. doi: 10.1016/j.physa.2019.04.189.

[40]

P. Yang, Hopf bifurcation of an age-structured prey-predator model with Holling type Ⅱ functional response incorporating a prey refuge, Nonlinear Anal. Real World Appl., 49 (2019), 368-385.  doi: 10.1016/j.nonrwa.2019.03.014.

[41]

P. Yang and Y. Wang, Existence and properties of Hopf bifurcation in an age-dependent predation system with prey harvesting, Commun. Nonlinear Sci. Numer. Simul., 91 (2020), 105395, 40 pp. doi: 10.1016/j.cnsns.2020.105395.

[42]

P. Yang and Y. Wang, Hopf bifurcation of an infection-age structured eco-epidemiological model with saturation incidence, J. Math. Anal. Appl., 477 (2019), 398-419.  doi: 10.1016/j.jmaa.2019.04.038.

[43]

P. Yang and Y. Wang, Hopf-zero bifurcation in an age-dependent predator-prey system with Monod-Haldane functional response comprising strong Allee effect, J. Differential Equations, 269 (2020), 9583-9618.  doi: 10.1016/j.jde.2020.06.048.

[44]

P. Yang and Y. Wang, Periodic solutions of a delayed eco-epidemiological model with infection-age structure and Holling type Ⅱ functional response, Intl. J. Bif. Chaos, 30 (2020), 2050011, 20 pp. doi: 10.1142/S021812742050011X.

[45]

Y. Yang and T. Zhang, Dynamic analysis of a modified stochastic predator-prey system with general ratio-dependent functional response, Bull. Korean Math. Soc., 53 (2016), 103-117.  doi: 10.4134/BKMS.2016.53.1.103.

[46]

X. Zhang and Z. Liu, Bifurcation analysis of an age structured HIV infection model with both virus-to-cell and cell-to-cell transmissions, Intl. J. Bif. Chaos, 28 (2018), 1850109, 20 pp. doi: 10.1142/S0218127418501092.

[47]

X. Zhang and Z. Liu, Hopf bifurcation for a susceptible-infective model with infection-age structure, J. Nonlinear Sci., 30 (2020), 317-367.  doi: 10.1007/s00332-019-09575-y.

[48]

X. Zhang and Z. Liu, Periodic oscillations in age-structured ratio-dependent predator-prey model with Michaelis-Menten type functional response, Phys. D, 389 (2019), 51-63.  doi: 10.1016/j.physd.2018.10.002.

Figure 1.  Numerical simulations of system (1) with $ \tau = 1 < {\tau _0} $ : (a) The solution of the prey; (b) The solution of the predator; (c) The phase portrait of system (1); (d) The distribution function of the predators $ u\left( {t, a} \right) $
Figure 2.  Numerical simulations of system (1) with $ \tau = 2.2 > {\tau _0} $ : (a) The solution of the prey; (b) The solution of the predator; (c) The phase portrait of system (1); (d) The distribution function of the predators $ u\left( {t, a} \right) $
Figure 3.  The effect of the refuge term $ m $ on the dynamics of the predator and prey populations
[1]

Xinyu Song, Liming Cai, U. Neumann. Ratio-dependent predator-prey system with stage structure for prey. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 747-758. doi: 10.3934/dcdsb.2004.4.747

[2]

Dongxue Yan, Yuan Yuan, Xianlong Fu. Asymptotic analysis of an age-structured predator-prey model with ratio-dependent Holling Ⅲ functional response and delays. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022034

[3]

Benjamin Leard, Catherine Lewis, Jorge Rebaza. Dynamics of ratio-dependent Predator-Prey models with nonconstant harvesting. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 303-315. doi: 10.3934/dcdss.2008.1.303

[4]

Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 391-405. doi: 10.3934/naco.2020033

[5]

Antoni Leon Dawidowicz, Anna Poskrobko. Stability problem for the age-dependent predator-prey model. Evolution Equations and Control Theory, 2018, 7 (1) : 79-93. doi: 10.3934/eect.2018005

[6]

Jaume Llibre, Claudio Vidal. Hopf periodic orbits for a ratio--dependent predator--prey model with stage structure. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1859-1867. doi: 10.3934/dcdsb.2016026

[7]

Inkyung Ahn, Wonlyul Ko, Kimun Ryu. Asymptotic behavior of a ratio-dependent predator-prey system with disease in the prey. Conference Publications, 2013, 2013 (special) : 11-19. doi: 10.3934/proc.2013.2013.11

[8]

Qian Cao, Yongli Cai, Yong Luo. Nonconstant positive solutions to the ratio-dependent predator-prey system with prey-taxis in one dimension. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1397-1420. doi: 10.3934/dcdsb.2021095

[9]

Xin Jiang, Zhikun She, Shigui Ruan. Global dynamics of a predator-prey system with density-dependent mortality and ratio-dependent functional response. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1967-1990. doi: 10.3934/dcdsb.2020041

[10]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

[11]

Yujing Gao, Bingtuan Li. Dynamics of a ratio-dependent predator-prey system with a strong Allee effect. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2283-2313. doi: 10.3934/dcdsb.2013.18.2283

[12]

Zhicheng Wang, Jun Wu. Existence of positive periodic solutions for delayed ratio-dependent predator-prey system with stocking. Communications on Pure and Applied Analysis, 2006, 5 (3) : 423-433. doi: 10.3934/cpaa.2006.5.423

[13]

Qing Zhu, Huaqin Peng, Xiaoxiao Zheng, Huafeng Xiao. Bifurcation analysis of a stage-structured predator-prey model with prey refuge. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2195-2209. doi: 10.3934/dcdss.2019141

[14]

Canan Çelik. Dynamical behavior of a ratio dependent predator-prey system with distributed delay. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 719-738. doi: 10.3934/dcdsb.2011.16.719

[15]

Marcos Lizana, Julio Marín. On the dynamics of a ratio dependent Predator-Prey system with diffusion and delay. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1321-1338. doi: 10.3934/dcdsb.2006.6.1321

[16]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[17]

Mostafa Fazly, Mahmoud Hesaaraki. Periodic solutions for a semi-ratio-dependent predator-prey dynamical system with a class of functional responses on time scales. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 267-279. doi: 10.3934/dcdsb.2008.9.267

[18]

Meng Fan, Qian Wang. Periodic solutions of a class of nonautonomous discrete time semi-ratio-dependent predator-prey systems. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 563-574. doi: 10.3934/dcdsb.2004.4.563

[19]

Liang Zhang, Zhi-Cheng Wang. Spatial dynamics of a diffusive predator-prey model with stage structure. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1831-1853. doi: 10.3934/dcdsb.2015.20.1831

[20]

Yanlin Zhang, Qi Cheng, Shengfu Deng. Qualitative structure of a discrete predator-prey model with nonmonotonic functional response. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022065

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (210)
  • HTML views (49)
  • Cited by (0)

Other articles
by authors

[Back to Top]