[1]
|
F. Alsayyari, Z. Perkó, M. Tiberga, J. L. Kloosterman and D. Lathouwers, A fully adaptive nonintrusive reduced-order modelling approach for parametrized time-dependent problems, Comput. Methods Appl. Mech. Engrg., 373 (2021), Paper No. 113483, 21 pp.
doi: 10.1016/j.cma.2020.113483.
|
[2]
|
C. Audouze, F. D. Vuyst and P. B. Nair, Nonintrusive reduced-order modeling of parametrized time-dependent partial differential equations, Numer. Methods Partial Differential Equations, 29 (2013), 1587-1628.
doi: 10.1002/num.21768.
|
[3]
|
M. Barrault, Y. Maday, N. C. Nguyen and A. T. Patera, An 'empirical interpolation' method: Application to efficient reduced-basis discretization of partial differential equations, C. R. Math., 339 (2004), 667-672.
doi: 10.1016/j.crma.2004.08.006.
|
[4]
|
P. Benner, S. Gugercin and K. Willcox, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., 57 (2015), 483-531.
doi: 10.1137/130932715.
|
[5]
|
M. Bernacki, L. Fezoui, S. Lanteri and S. Piperno, Parallel discontinuous Galerkin unstructured mesh solvers for the calculation of three-dimensional wave propagation problems, Appl. Math. Model., 30 (2006), 744-763.
|
[6]
|
F. Casenave, A. Ern and T. Leliévre, A nonintrusive reduced basis method applied to aeroacoustic simulations, Adv. Comput. Math., 41 (2015), 961-986.
doi: 10.1007/s10444-014-9365-0.
|
[7]
|
R. Chakir, Y. Maday and P. Parnaudeau, A non-intrusive reduced basis approach for parametrized heat transfer problems, J. Comput. Phys., 376 (2019), 617-633.
doi: 10.1016/j.jcp.2018.10.001.
|
[8]
|
S. Chaturantabut and D. C. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32 (2010), 2737-2764.
doi: 10.1137/090766498.
|
[9]
|
W. Chen, Q. Wang, J. S. Hesthaven and C. Zhang, Physics-informed machine learning for reduced-order modeling of nonlinear problems, J. Comput. Phys., 446 (2021), Paper No. 110666, 28 pp.
doi: 10.1016/j.jcp.2021.110666.
|
[10]
|
N. Dal Santo, S. Deparis and L. Pegolotti, Data driven approximation of parametrized pdes by reduced basis and neural networks, J. Comput. Phys., 416 (2020), 109550.
doi: 10.1016/j.jcp.2020.109550.
|
[11]
|
S. Fresca, L. Dede and A. Manzoni, A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized pdes, J. Sci. Comput., 87 (2021).
doi: 10.1007/s10915-021-01462-7.
|
[12]
|
T. Gerstner and M. Griebel, Numerical integration using sparse grids, Numer. Algorithms, 18 (1998).
doi: 10.1023/A:1019129717644.
|
[13]
|
M. Guo and J. S. Hesthaven, Data-driven reduced order modeling for time-dependent problems, Comput. Methods Appl. Mech. Engrg., 345 (2019), 75-99.
doi: 10.1016/j.cma.2018.10.029.
|
[14]
|
J. S. Hesthaven, G. Rozza and B. Stamm, et al., Certified Reduced Basis Methods for Parametrized Partial Differential Equations, Springer, Cham; BCAM Basque Center for Applied Mathematics, Bilbao, 2016.
doi: 10.1007/978-3-319-22470-1.
|
[15]
|
J. S. Hesthaven and U. Stefano, Non-intrusive reduced order modeling of nonlinear problems using neural networks, J. Comput. Phys., 363 (2018), 55-78.
doi: 10.1016/j.jcp.2018.02.037.
|
[16]
|
J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Springer, New York, 2008.
doi: 10.1007/978-0-387-72067-8.
|
[17]
|
K. L. Judd, L. Maliar, S. Maliar and R. Valero, Smolyak method for solving dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive domain, J. Econom. Dynam. Control, 44 (2014), 92-123.
doi: 10.1016/j.jedc.2014.03.003.
|
[18]
|
E. N. Karatzas, F. Ballarin and G. Rozza, Projection-based reduced order models for a cut finite element method in parametrized domains, Comput. Math. Appl., 79 (2020), 833-851.
doi: 10.1016/j.camwa.2019.08.003.
|
[19]
|
M. Kast, M. Guo and J. S. Hesthaven, A non-intrusive multifidelity method for the reduced order modeling of nonlinear problems, Comput. Methods Appl. Mech. Engrg., 364 (2020), 112947, 28 pp.
doi: 10.1016/j.cma.2020.112947.
|
[20]
|
K. Kunisch and S. Volkwein, Optimal snapshot location for computing POD basis functions, M2AN Math. Model. Numer. Anal., 44 (2010), 509-529.
doi: 10.1051/m2an/2010011.
|
[21]
|
O. Lass and S. Volkwein, POD-Galerkin schemes for nonlinear elliptic-parabolic systems, SIAM J. Sci. Comput., 35 (2013), 1271-1298.
doi: 10.1137/110848414.
|
[22]
|
K. Li, T.-Z. Huang, L. Li and S. Lanteri, Non-intrusive reduced-order modeling of parameterized electromagnetic scattering problems using cubic spline interpolation, J. Sci. Comput., 87 (2021), Paper No. 52, 29 pp.
doi: 10.1007/s10915-021-01467-2.
|
[23]
|
K. Li, T.-Z. Huang, L. Li and S. Lanteri, POD-based model order reduction with an adaptive snapshot selection for a discontinuous Galerkin approximation of the time-domain Maxwell's equations, J. Comput. Phys., 396 (2019), 106-128.
doi: 10.1016/j.jcp.2019.05.051.
|
[24]
|
K. Li, T.-Z. Huang, L. Li, S. Lanteri, L. Xu and B. Li, A reduced-order discontinuous Galerkin method based on POD for electromagnetic simulation, IEEE Trans. Antennas and Propagation, 66 (2018), 242-254.
|
[25]
|
S. L. Lohr, Sampling: Design and Analysis, 2$^{nd}$ edition, Brooks/Cole, Cengage Learning, Boston, MA, 2010.
|
[26]
|
S. Lorenzi, A. Cammi, L. Luzzi and G. Rozza, POD-Galerkin method for finite volume approximation of Navier–Stokes and RANS equations, Comput. Methods Appl. Mech. Engrg., 311 (2016), 151-179.
doi: 10.1016/j.cma.2016.08.006.
|
[27]
|
D. Loukrezis, U. Römer and H. D. Gersem, Assessing the performance of Leja and Clenshaw-Curtis collocation for computational electromagnetics with random input data, Int. J. Uncertain. Quantif., 9 (2019), 33-57.
doi: 10.1615/Int.J.UncertaintyQuantification.2018025234.
|
[28]
|
Z. Luo, Proper orthogonal decomposition-based reduced-order stabilized mixed finite volume element extrapolating model for the nonstationary incompressible Boussinesq equations, J. Math. Anal. Appl., 425 (2015), 259-280.
doi: 10.1016/j.jmaa.2014.12.011.
|
[29]
|
Z. Luo and J. Gao, A POD reduced-order finite difference time-domain extrapolating scheme for the 2D Maxwell equations in a lossy medium, J. Math. Anal. Appl., 444 (2016), 433-451.
doi: 10.1016/j.jmaa.2016.06.036.
|
[30]
|
Z. Luo and W. Jiang, A reduced-order extrapolated technique about the unknown coefficient vectors of solutions in the finite element method for hyperbolic type equation, Appl. Numer. Math., 158 (2020), 123-133.
doi: 10.1016/j.apnum.2020.07.025.
|
[31]
|
Z. Luo, H. Li, Y. Zhou and X. Huang, A reduced FVE formulation based on POD method and error analysis for two-dimensional viscoelastic problem, J. Math. Anal. Appl., 385 (2012), 310-321.
doi: 10.1016/j.jmaa.2011.06.057.
|
[32]
|
Z. Luo, Q. Ou and Z. Xie, Reduced finite difference scheme and error estimates based on POD method for non-stationary Stokes equation, Appl. Math. Mech., 32 (2011), 847-858.
doi: 10.1007/s10483-011-1464-9.
|
[33]
|
Z. Luo and F. Teng, A reduced-order extrapolated finite difference iterative scheme based on POD method for 2D sobolev equation, Appl. Math. Comput., 329 (2018), 374-383.
doi: 10.1016/j.amc.2018.02.022.
|
[34]
|
Z. Luo, F. Teng and H. Xia, A reduced-order extrapolated Crank-Nicolson finite spectral element method based on POD for the 2D non-stationary boussinesq equations, J. Math. Anal. Appl., 471 (2019), 564-583.
doi: 10.1016/j.jmaa.2018.10.092.
|
[35]
|
Z. Luo and H. Ren, A reduced-order extrapolated finite difference iterative method for the riemann-liouville tempered fractional derivative equation, Appl. Numer. Math., 157 (2020), 307-314.
doi: 10.1016/j.apnum.2020.05.028.
|
[36]
|
Z. Luo and J. Shiju, A reduced-order extrapolated Crank-Nicolson collocation spectral method based on proper orthogonal decomposition for the two-dimensional viscoelastic wave equations, Numer. Methods Partial Differential Equations, 36 (2020), 49-65.
doi: 10.1002/num.22397.
|
[37]
|
B. Peherstorfer, K. Willcox and M. Gunzburger, Survey of multifidelity methods in uncertainty propagation, inference, and optimization, SIAM Rev., 60 (2018), 550-591.
doi: 10.1137/16M1082469.
|
[38]
|
P. Phalippou, S. Bouabdallah, P. Breitkopf, P. Villon and M. Zarroug, 'On-the-fly' snapshots selection for proper orthogonal decomposition with application to nonlinear dynamics, Comput. Methods Appl. Mech. Engrg., 367 (2020), 113120.
doi: 10.1016/j.cma.2020.113120.
|
[39]
|
C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, MIT press, 2006.
|
[40]
|
N. Schmitt, C. Scheid, J. Viquerat and S. Lanteri, Simulation of three-dimensional nanoscale light interaction with spatially dispersive metals using a high order curvilinear DGTD method, J. Comput. Phys., 373 (2018), 210-229.
doi: 10.1016/j.jcp.2018.06.033.
|
[41]
|
G. Stabile and G. Rozza, Finite POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier-Stokes equations, Comput. & Fluids, 173 (2018), 273-284.
doi: 10.1016/j.compfluid.2018.01.035.
|
[42]
|
X. Sun, X. Pan and J.-I. Choi, Non-intrusive framework of reduced-order modeling based on proper orthogonal decomposition and polynomial chaos expansion, J. Comput. Appl. Math., 390 (2021), 113372.
doi: 10.1016/j.cam.2020.113372.
|
[43]
|
S. Ullmann, M. Rotkvic and J. Lang, POD-Galerkin reduced-order modeling with adaptive finite element snapshots, J. Comput. Phys., 325 (2016), 244-258.
doi: 10.1016/j.jcp.2016.08.018.
|
[44]
|
F. Vidal-Codina, N. C. Nguyen and J. Peraire, Computing parametrized solutions for plasmonic nanogap structures, J. Comput. Phys., 366 (2018), 89-106.
doi: 10.1016/j.jcp.2018.04.009.
|
[45]
|
J. Viquerat and S. Lanteri, Simulation of near-field plasmonic interactions with a local approximation order discontinuous Galerkin time-domain method, Photonics Nanostruct., 18 (2016), 43-58.
|
[46]
|
Q. Wang, J. S. Hesthaven and D. Ray, Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem, J. Comput. Phys., 384 (2019), 289-307.
doi: 10.1016/j.jcp.2019.01.031.
|
[47]
|
Q. Wang, N. Ripamonti and J. S. Hesthaven, Recurrent neural network closure of parametric POD-Galerkin reduced-order models based on the Mori-Zwanzig formalism, J. Comput. Phys., 410 (2020), 109402, 32 pp.
doi: 10.1016/j.jcp.2020.109402.
|
[48]
|
C. K. I. Williams and C. E. Rasmussen, Gaussian processes for regression, In Proceedings of the 8th International Conference on Neural Information Processing Systems, MIT, (1995), 514–520.
|
[49]
|
D. Xiao, F. Fang, C. Pain and I. Navon, A parameterized non-intrusive reduced order model and error analysis for general time-dependent nonlinear partial differential equations and its applications, Comput. Methods Appl. Mech. Engrg., 317 (2017), 868-889.
doi: 10.1016/j.cma.2016.12.033.
|
[50]
|
D. Xiao, Z. Lin, F. Fang, C. C. Pain, L. M. Navon, P. Salinas and A. Muggeridge, Non-intrusive reduced-order modeling for multiphase porous media flows using smolyak sparse grids, Internat. J. Numer. Methods Fluids, 83 (2017), 205-219.
doi: 10.1002/fld.4263.
|
[51]
|
B. Xu and X. Zhang, An efficient high-order compact finite difference scheme based on proper orthogonal decomposition for the multi-dimensional parabolic equation, Adv. Differ. Equ., 2019 (2019), 341.
doi: 10.1186/s13662-019-2273-3.
|
[52]
|
R. Yondo, E. Andrés and E. Valero, A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses, Prog. Aerosp. Sci., 96 (2018), 23-61.
|
[53]
|
J. Yu, C. Yan, Z. Jiang, W. Yuan and S. Chen, Adaptive non-intrusive reduced order modeling for compressible flows, J. Comput. Phys., 397 (2019), 108855.
doi: 10.1016/j.jcp.2019.07.053.
|
[54]
|
X. Zhang and P. Zhang, A reduced high-order compact finite difference scheme based on proper orthogonal decomposition technique for KdV equation, Appl. Math. Comput., 339 (2018), 535-545.
doi: 10.1016/j.amc.2018.07.017.
|
[55]
|
Y. Zhou, Y. Zhang, Y. Liang and Z. Luo, A reduced-order extrapolated model based on splitting implicit finite difference scheme and proper orthogonal decomposition for the fourth-order nonlinear rosenau equation, Appl. Numer. Math., 162 (2021), 192-200.
doi: 10.1016/j.apnum.2020.12.020.
|