doi: 10.3934/dcdsb.2022091
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Asymptotic stability of planar rarefaction wave to a multi-dimensional two-phase flow

Faculty of Science, Beijing University of Technology, Beijing 100124, China

* Corresponding author: Yixuan Zhao

Received  December 2021 Early access May 2022

Fund Project: The work is supported by National Natural Science Foundation of China (11601021, 11831003, 11771031, 12171111), the Science and Technology Project of Beijing Municipal Education Commission (KZ202110005011) and Project for University Key Young Teacher by Education of Henan Province (No.2021GGJS158)

We are concerned with the time-asymptotic stability of planar rarefaction wave to a non-conservative two-phase flow system described by two-dimentional compressible Euler and Navier-Stokes equations through drag force. In this paper, we show the planar rarefaction wave to a non-conservative compressible two-phase model is asymptotically stable under small initial perturbation in $ H^3 $. The main difficulties overcome in this paper come from the non-viscosity of one fluid and the interaction between two fluids caused by drag force. The stability result is proved by the energy method.

Citation: Shu Wang, Yixuan Zhao. Asymptotic stability of planar rarefaction wave to a multi-dimensional two-phase flow. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2022091
References:
[1]

R. Duan and S. Liu, Global stability of rarefaction waves of the Navier-Stokes-Poisson system, J. Differ. Equ., 258 (2015), 2495-2530.  doi: 10.1016/j.jde.2014.12.019.

[2]

R. DuanS. LiuH. Yin and C. Zhu, Stability of the rarefaction wave for a two-fluid plasma model with diffusion, Sci. China Math., 59 (2016), 67-84.  doi: 10.1007/s11425-015-5059-4.

[3]

R. Duan and X. Yang, Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations, Commun. Pure Appl. Anal., 12 (2013), 985-1014.  doi: 10.3934/cpaa.2013.12.985.

[4]

F. Huang and T. Wang, Stability of superposition of viscous contact wave and rarefaction waves for compressible Navier-Stokes system, Indiana U. Math. J., 65 (2016), 1833-1875.  doi: 10.1512/iumj.2016.65.5914.

[5]

Q. JiuY. Wang and Z. Xin, Vacuum behaviors around rarefaction waves to 1D compressible Navier-Stokes equations with density-dependent viscosity, SIAM J. Math. Anal., 45 (2013), 3194-3228.  doi: 10.1137/120879919.

[6]

P. D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., 10 (1957), 537-566.  doi: 10.1002/cpa.3160100406.

[7]

L.-A. Li and Y. Wang, Stability of the planar rarefaction wave to two-dimensional compressible Navier-Stokes equations, SIAM J. Math. Anal., 50 (2018), 4937-4963.  doi: 10.1137/18M1171059.

[8]

L.-A. LiT. Wang and Y. Wang, Stability of planar rarefaction wave to 3D full compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 230 (2018), 911-937.  doi: 10.1007/s00205-018-1260-2.

[9]

L.-A. LiD. Wang and Y. Wang, Vanishing viscosity limit to the planar rarefaction wave for the two-dimensional compressible Navier-Stokes equations, Comm. Math. Phys., 376 (2020), 353-384.  doi: 10.1007/s00220-019-03580-8.

[10]

L.-A. Li, D. Wang and Y. Wang, Vanishing dissipation limit to the planar rarefaction wave for the three-dimensional compressible Navier-Stokes-Fourier equations, J. Funct. Anal., 283 (2022), Paper No. 109499. doi: 10.48550/arXiv.2101.04291.

[11]

H.-L. LiT. Wang and Y. Wang, Wave phenomena to the three-dimensional fluid-particle model, Arch. Ration. Mech. Anal., 243 (2022), 1019-1089.  doi: 10.1007/s00205-021-01747-z.

[12]

T. LuoH. Yin and C. Zhu, Stability of the rarefaction wave for a coupled compressible Navier-Stokes/Allen-Cahn system, Math. Methods Appl. Sci., 41 (2018), 4724-4736.  doi: 10.1002/mma.4925.

[13]

A. Matsumura and K. Nishihara, Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math., 3 (1986), 1-13.  doi: 10.1007/BF03167088.

[14]

A. Matsumura and K. Nishihara, Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas, Comm. Math. Phys., 144 (1992), 325-335.  doi: 10.1007/BF02101095.

[15]

K. NishiharaT. Yang and H. Zhao, Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations, SIAM J. Math. Anal., 35 (2004), 1561-1597.  doi: 10.1137/S003614100342735X.

[16]

V. A. Solonnikov, On solvability of an initial-boundary value problem for the equations of motion of a viscous compressible fluid, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 56 (1976), 128-142. 

[17]

S. Wang and Y. Zhao, Stability of planar rarefaction wave to a multi-dimensional non-conservative viscous compressible two-phase flow, J. Math. Anal. Appl., 506 (2022), Paper No. 125657, 33 pp. doi: 10.1016/j.jmaa.2021.125657.

[18]

T. Wang and Y. Wang, Stability of planar rarefaction wave to the three-dimensional Boltzmann equation, Kinet. Relat. Models, 12 (2019), 637-679.  doi: 10.3934/krm.2019025.

[19]

H. YinJ. Zhang and C. Zhu, Stability of the superposition of boundary layer and rarefaction wave for outflow problem on the two-fluid Navier-Stokes-Poisson system, Nonlinear Anal. Real World Appl., 31 (2016), 492-512.  doi: 10.1016/j.nonrwa.2016.01.020.

[20]

H. Yin and C. Zhu, Asymptotic stability of superposition of stationary solutions and rarefaction waves for 1D Navier-Stokes/Allen-Cahn system, J. Differ. Equ., 266 (2019), 7291-7326.  doi: 10.1016/j.jde.2018.11.034.

show all references

References:
[1]

R. Duan and S. Liu, Global stability of rarefaction waves of the Navier-Stokes-Poisson system, J. Differ. Equ., 258 (2015), 2495-2530.  doi: 10.1016/j.jde.2014.12.019.

[2]

R. DuanS. LiuH. Yin and C. Zhu, Stability of the rarefaction wave for a two-fluid plasma model with diffusion, Sci. China Math., 59 (2016), 67-84.  doi: 10.1007/s11425-015-5059-4.

[3]

R. Duan and X. Yang, Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations, Commun. Pure Appl. Anal., 12 (2013), 985-1014.  doi: 10.3934/cpaa.2013.12.985.

[4]

F. Huang and T. Wang, Stability of superposition of viscous contact wave and rarefaction waves for compressible Navier-Stokes system, Indiana U. Math. J., 65 (2016), 1833-1875.  doi: 10.1512/iumj.2016.65.5914.

[5]

Q. JiuY. Wang and Z. Xin, Vacuum behaviors around rarefaction waves to 1D compressible Navier-Stokes equations with density-dependent viscosity, SIAM J. Math. Anal., 45 (2013), 3194-3228.  doi: 10.1137/120879919.

[6]

P. D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., 10 (1957), 537-566.  doi: 10.1002/cpa.3160100406.

[7]

L.-A. Li and Y. Wang, Stability of the planar rarefaction wave to two-dimensional compressible Navier-Stokes equations, SIAM J. Math. Anal., 50 (2018), 4937-4963.  doi: 10.1137/18M1171059.

[8]

L.-A. LiT. Wang and Y. Wang, Stability of planar rarefaction wave to 3D full compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 230 (2018), 911-937.  doi: 10.1007/s00205-018-1260-2.

[9]

L.-A. LiD. Wang and Y. Wang, Vanishing viscosity limit to the planar rarefaction wave for the two-dimensional compressible Navier-Stokes equations, Comm. Math. Phys., 376 (2020), 353-384.  doi: 10.1007/s00220-019-03580-8.

[10]

L.-A. Li, D. Wang and Y. Wang, Vanishing dissipation limit to the planar rarefaction wave for the three-dimensional compressible Navier-Stokes-Fourier equations, J. Funct. Anal., 283 (2022), Paper No. 109499. doi: 10.48550/arXiv.2101.04291.

[11]

H.-L. LiT. Wang and Y. Wang, Wave phenomena to the three-dimensional fluid-particle model, Arch. Ration. Mech. Anal., 243 (2022), 1019-1089.  doi: 10.1007/s00205-021-01747-z.

[12]

T. LuoH. Yin and C. Zhu, Stability of the rarefaction wave for a coupled compressible Navier-Stokes/Allen-Cahn system, Math. Methods Appl. Sci., 41 (2018), 4724-4736.  doi: 10.1002/mma.4925.

[13]

A. Matsumura and K. Nishihara, Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math., 3 (1986), 1-13.  doi: 10.1007/BF03167088.

[14]

A. Matsumura and K. Nishihara, Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas, Comm. Math. Phys., 144 (1992), 325-335.  doi: 10.1007/BF02101095.

[15]

K. NishiharaT. Yang and H. Zhao, Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations, SIAM J. Math. Anal., 35 (2004), 1561-1597.  doi: 10.1137/S003614100342735X.

[16]

V. A. Solonnikov, On solvability of an initial-boundary value problem for the equations of motion of a viscous compressible fluid, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 56 (1976), 128-142. 

[17]

S. Wang and Y. Zhao, Stability of planar rarefaction wave to a multi-dimensional non-conservative viscous compressible two-phase flow, J. Math. Anal. Appl., 506 (2022), Paper No. 125657, 33 pp. doi: 10.1016/j.jmaa.2021.125657.

[18]

T. Wang and Y. Wang, Stability of planar rarefaction wave to the three-dimensional Boltzmann equation, Kinet. Relat. Models, 12 (2019), 637-679.  doi: 10.3934/krm.2019025.

[19]

H. YinJ. Zhang and C. Zhu, Stability of the superposition of boundary layer and rarefaction wave for outflow problem on the two-fluid Navier-Stokes-Poisson system, Nonlinear Anal. Real World Appl., 31 (2016), 492-512.  doi: 10.1016/j.nonrwa.2016.01.020.

[20]

H. Yin and C. Zhu, Asymptotic stability of superposition of stationary solutions and rarefaction waves for 1D Navier-Stokes/Allen-Cahn system, J. Differ. Equ., 266 (2019), 7291-7326.  doi: 10.1016/j.jde.2018.11.034.

[1]

Theodore Tachim Medjo. A two-phase flow model with delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137

[2]

Teng Wang, Yi Wang. Nonlinear stability of planar rarefaction wave to the three-dimensional Boltzmann equation. Kinetic and Related Models, 2019, 12 (3) : 637-679. doi: 10.3934/krm.2019025

[3]

Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks and Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401

[4]

G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010

[5]

K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591

[6]

Feimin Huang, Dehua Wang, Difan Yuan. Nonlinear stability and existence of vortex sheets for inviscid liquid-gas two-phase flow. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3535-3575. doi: 10.3934/dcds.2019146

[7]

T. Tachim Medjo. Averaging of an homogeneous two-phase flow model with oscillating external forces. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3665-3690. doi: 10.3934/dcds.2012.32.3665

[8]

Esther S. Daus, Josipa-Pina Milišić, Nicola Zamponi. Global existence for a two-phase flow model with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 957-979. doi: 10.3934/dcdsb.2019198

[9]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control and Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[10]

Changyan Li, Hui Li. Well-posedness of the two-phase flow problem in incompressible MHD. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5609-5632. doi: 10.3934/dcds.2021090

[11]

Feng Ma, Mingfang Ni. A two-phase method for multidimensional number partitioning problem. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 203-206. doi: 10.3934/naco.2013.3.203

[12]

Barbara Lee Keyfitz, Richard Sanders, Michael Sever. Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 541-563. doi: 10.3934/dcdsb.2003.3.541

[13]

Renjun Duan, Xiongfeng Yang. Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations. Communications on Pure and Applied Analysis, 2013, 12 (2) : 985-1014. doi: 10.3934/cpaa.2013.12.985

[14]

Yangyang Qiao, Huanyao Wen, Steinar Evje. Compressible and viscous two-phase flow in porous media based on mixture theory formulation. Networks and Heterogeneous Media, 2019, 14 (3) : 489-536. doi: 10.3934/nhm.2019020

[15]

Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157

[16]

Helmut Abels, Harald Garcke, Josef Weber. Existence of weak solutions for a diffuse interface model for two-phase flow with surfactants. Communications on Pure and Applied Analysis, 2019, 18 (1) : 195-225. doi: 10.3934/cpaa.2019011

[17]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks and Heterogeneous Media, 2017, 12 (1) : 147-171. doi: 10.3934/nhm.2017006

[18]

Marie Henry, Danielle Hilhorst, Robert Eymard. Singular limit of a two-phase flow problem in porous medium as the air viscosity tends to zero. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 93-113. doi: 10.3934/dcdss.2012.5.93

[19]

Theodore Tachim Medjo. On the convergence of a stochastic 3D globally modified two-phase flow model. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 395-430. doi: 10.3934/dcds.2019016

[20]

Brahim Amaziane, Mladen Jurak, Leonid Pankratov, Anja Vrbaški. Some remarks on the homogenization of immiscible incompressible two-phase flow in double porosity media. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 629-665. doi: 10.3934/dcdsb.2018037

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (120)
  • HTML views (142)
  • Cited by (0)

Other articles
by authors

[Back to Top]