\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Random attractors of supercritical wave equations driven by infinite-dimensional additive noise on $ \mathbb{R}^n $

  • * Corresponding author: Bixiang Wang

    * Corresponding author: Bixiang Wang
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we prove the existence and uniqueness of tempered pullback random attractors of the supercritical stochastic wave equations driven by an infinite-dimensional additive white noise on $ \mathbb{R}^n $ with $ n\le 6 $. We first construct a tempered pullback random absorbing set in the natural energy space, and then establish the pullback asymptotic compactness of the solution operator by applying the idea of uniform tail-ends estimates as well as the uniform Strichartz estimates of solutions to circumvent the lack of compactness of Sobolev embeddings on unbounded domains.

    Mathematics Subject Classification: Primary: 35B40, 60H15; Secondary: 35R60, 35B41, 35L05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] J. ArrietaA. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations, 17 (1992), 841-866.  doi: 10.1080/03605309208820866.
    [2] A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.
    [3] J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Continuous Dynamical Systems, 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.
    [4] P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.
    [5] P. W. BatesK. Lu and B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Phys. D, 289 (2014), 32-50.  doi: 10.1016/j.physd.2014.08.004.
    [6] T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443.  doi: 10.3934/dcds.2008.21.415.
    [7] T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439-455.  doi: 10.3934/dcdsb.2010.14.439.
    [8] T. CaraballoJ. A. LangaV. S. Melnik and J. Valero, Pullback attractors for nonautonomous and stochastic multivalued dynamical systems, Set-Valued Analysis, 11 (2003), 153-201.  doi: 10.1023/A:1022902802385.
    [9] H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dyn. Diff. Eqns., 9 (1997), 307-341.  doi: 10.1007/BF02219225.
    [10] H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.
    [11] X. Fan, Random attractors for damped stochastic wave equations with multiplicative noise, Internat. J. Math., 19 (2008), 421-437.  doi: 10.1142/S0129167X08004741.
    [12] E. Feireisl, Attractors for semilinear damped wave equations on $\mathbb{R}^3$, Nonlinear Anal., 23 (1994), 187-195.  doi: 10.1016/0362-546X(94)90041-8.
    [13] E. Feireisl, Asymptotic behavior and attractors for a semilinear damped equation with supercritical exponent, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 1051-1062.  doi: 10.1017/S0308210500022630.
    [14] F. Flandoli and B. Schmalfuss, Random attractors for the $3$D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.
    [15] J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., 133 (1995), 50-68.  doi: 10.1006/jfan.1995.1119.
    [16] A. GuB. Guo and B. Wang, Long term behavior of random Navier-Stokes equations driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 2495-2532.  doi: 10.3934/dcdsb.2020020.
    [17] A. Gu and B. Wang, Asymptotic behavior of random FitzHugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1689-1720.  doi: 10.3934/dcdsb.2018072.
    [18] J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988. doi: 10.1090/surv/025.
    [19] L. Kapitanski, Minimal compact global attractor for a damped semilinear wave equation, Comm. Partial Differential Equations, 20 (1995), 1303-1323.  doi: 10.1080/03605309508821133.
    [20] L. V. Kapitanskii, Cauchy problem for a semilinear wave equation, Ⅱ, J. Soviet Math., 62 (1992), 2746-2777.  doi: 10.1007/BF01671000.
    [21] P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.
    [22] O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Applied Mathematical Sciences Vol. 49, Springer, New York, 1985. doi: 10.1007/978-1-4757-4317-3.
    [23] H. LiY. You and J. Tu, Random attractors and averaging for non-autonomous stochastic wave equations with nonlinear damping, J. Differential Equations, 258 (2015), 148-190.  doi: 10.1016/j.jde.2014.09.007.
    [24] J. -L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.
    [25] C. LiuF. Meng and C. Sun, Well-posedness and attractors for a super-cubic weakly damped wave equation with $H^{-1} $ source term, J. Differential Equations, 263 (2017), 8718-8748.  doi: 10.1016/j.jde.2017.08.047.
    [26] Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, J. Differential Equations, 244 (2008), 1-23.  doi: 10.1016/j.jde.2007.10.009.
    [27] M. Prizzi and K. P. Rybakowski, Attractors for semilinear damped wave equations on arbitrary unbounded domains, Topol. Methods Nonlinear Anal., 31 (2008), 49-82. 
    [28] M. Prizzi and K. P. Rybakowski, Attractors for singularly perturbed damped wave equations on unbounded domains, Topol. Methods Nonlinear Anal., 32 (2008), 1-20. 
    [29] B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, 185–192, Dresden, 1992.
    [30] G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9.
    [31] C. SunM. Yang and C. Zhong, Global attractors for the wave equation with nonlinear damping, J. Differential Equation, 227 (2006), 427-443.  doi: 10.1016/j.jde.2005.09.010.
    [32] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.
    [33] B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Physica D, 128 (1999), 41-52.  doi: 10.1016/S0167-2789(98)00304-2.
    [34] B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains, J. Differential Equations, 246 (2009), 2506-2537.  doi: 10.1016/j.jde.2008.10.012.
    [35] B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $ \mathbb{R}^3$, Trans. Amer. Math. Soc., 363 (2011), 3639-3663.  doi: 10.1090/S0002-9947-2011-05247-5.
    [36] B. Wang, Asymptotic behavior of supercritical wave equations driven by colored noise on unbounded domains, Discrete Contin. Dyn. Syst. Ser. B, 2021. doi: 10.3934/dcdsb. 2021223.
    [37] B. Wang, Well-posedness and long term behavior of supercritical wave equations driven by nonlinear colored noise on $ \mathbb{R}^n$, J. Funct. Anal., 283 (2022), 109498.  doi: 10.1016/j.jfa.2022.109498.
    [38] B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.
    [39] B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.
    [40] B. Wang, Multivalued non-autonomous random dynamical systems for wave equations without uniqueness, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2011-2051.  doi: 10.3934/dcdsb.2017119.
    [41] B. Wang, Random attractors of supercritical stochastic wave equations, Pure and Applied Functional Analysis, (in press).
    [42] R. WangL. Shi and B. Wang, Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on $\mathbb{R}^N$, Nonlinearity, 32 (2019), 4524-4556.  doi: 10.1088/1361-6544/ab32d7.
    [43] X. WangD. Li and J. Shen, Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 2829-2855.  doi: 10.3934/dcdsb.2020207.
    [44] X. WangK. Lu and B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 264 (2018), 378-424.  doi: 10.1016/j.jde.2017.09.006.
    [45] Z. Wang and S. Zhou, Random attractor for stochastic non-autonomous damped wave equation with critical exponent, Discrete Contin. Dyn. Syst., 37 (2017), 545-573.  doi: 10.3934/dcds.2017022.
    [46] Z. WangS. Zhou and A. Gu, Random attractors for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Anal. Real World Appl., 12 (2011), 3468-3482.  doi: 10.1016/j.nonrwa.2011.06.008.
    [47] M. YangJ. Duan and P. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise, Nonlinear Anal. Real World Appl., 12 (2011), 464-478.  doi: 10.1016/j.nonrwa.2010.06.032.
    [48] S. Zhou and M. Zhao, Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise, Discrete Contin. Dyn. Syst., 36 (2016), 2887-2914.  doi: 10.3934/dcds.2016.36.2887.
  • 加载中
SHARE

Article Metrics

HTML views(523) PDF downloads(283) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return