In this paper, we prove the existence and uniqueness of tempered pullback random attractors of the supercritical stochastic wave equations driven by an infinite-dimensional additive white noise on $ \mathbb{R}^n $ with $ n\le 6 $. We first construct a tempered pullback random absorbing set in the natural energy space, and then establish the pullback asymptotic compactness of the solution operator by applying the idea of uniform tail-ends estimates as well as the uniform Strichartz estimates of solutions to circumvent the lack of compactness of Sobolev embeddings on unbounded domains.
Citation: |
[1] |
J. Arrieta, A. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations, 17 (1992), 841-866.
doi: 10.1080/03605309208820866.![]() ![]() ![]() |
[2] |
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.
![]() ![]() |
[3] |
J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Continuous Dynamical Systems, 10 (2004), 31-52.
doi: 10.3934/dcds.2004.10.31.![]() ![]() ![]() |
[4] |
P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.
doi: 10.1016/j.jde.2008.05.017.![]() ![]() ![]() |
[5] |
P. W. Bates, K. Lu and B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Phys. D, 289 (2014), 32-50.
doi: 10.1016/j.physd.2014.08.004.![]() ![]() ![]() |
[6] |
T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443.
doi: 10.3934/dcds.2008.21.415.![]() ![]() ![]() |
[7] |
T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439-455.
doi: 10.3934/dcdsb.2010.14.439.![]() ![]() ![]() |
[8] |
T. Caraballo, J. A. Langa, V. S. Melnik and J. Valero, Pullback attractors for nonautonomous and stochastic multivalued dynamical systems, Set-Valued Analysis, 11 (2003), 153-201.
doi: 10.1023/A:1022902802385.![]() ![]() ![]() |
[9] |
H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dyn. Diff. Eqns., 9 (1997), 307-341.
doi: 10.1007/BF02219225.![]() ![]() ![]() |
[10] |
H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100 (1994), 365-393.
doi: 10.1007/BF01193705.![]() ![]() ![]() |
[11] |
X. Fan, Random attractors for damped stochastic wave equations with multiplicative noise, Internat. J. Math., 19 (2008), 421-437.
doi: 10.1142/S0129167X08004741.![]() ![]() ![]() |
[12] |
E. Feireisl, Attractors for semilinear damped wave equations on $\mathbb{R}^3$, Nonlinear Anal., 23 (1994), 187-195.
doi: 10.1016/0362-546X(94)90041-8.![]() ![]() ![]() |
[13] |
E. Feireisl, Asymptotic behavior and attractors for a semilinear damped equation with supercritical exponent, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 1051-1062.
doi: 10.1017/S0308210500022630.![]() ![]() ![]() |
[14] |
F. Flandoli and B. Schmalfuss, Random attractors for the $3$D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.
doi: 10.1080/17442509608834083.![]() ![]() ![]() |
[15] |
J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., 133 (1995), 50-68.
doi: 10.1006/jfan.1995.1119.![]() ![]() ![]() |
[16] |
A. Gu, B. Guo and B. Wang, Long term behavior of random Navier-Stokes equations driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 2495-2532.
doi: 10.3934/dcdsb.2020020.![]() ![]() ![]() |
[17] |
A. Gu and B. Wang, Asymptotic behavior of random FitzHugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1689-1720.
doi: 10.3934/dcdsb.2018072.![]() ![]() ![]() |
[18] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988.
doi: 10.1090/surv/025.![]() ![]() ![]() |
[19] |
L. Kapitanski, Minimal compact global attractor for a damped semilinear wave equation, Comm. Partial Differential Equations, 20 (1995), 1303-1323.
doi: 10.1080/03605309508821133.![]() ![]() ![]() |
[20] |
L. V. Kapitanskii, Cauchy problem for a semilinear wave equation, Ⅱ, J. Soviet Math., 62 (1992), 2746-2777.
doi: 10.1007/BF01671000.![]() ![]() ![]() |
[21] |
P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 163-181.
doi: 10.1098/rspa.2006.1753.![]() ![]() ![]() |
[22] |
O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Applied Mathematical Sciences Vol. 49, Springer, New York, 1985.
doi: 10.1007/978-1-4757-4317-3.![]() ![]() ![]() |
[23] |
H. Li, Y. You and J. Tu, Random attractors and averaging for non-autonomous stochastic wave equations with nonlinear damping, J. Differential Equations, 258 (2015), 148-190.
doi: 10.1016/j.jde.2014.09.007.![]() ![]() ![]() |
[24] |
J. -L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.
![]() ![]() |
[25] |
C. Liu, F. Meng and C. Sun, Well-posedness and attractors for a super-cubic weakly damped wave equation with $H^{-1} $ source term, J. Differential Equations, 263 (2017), 8718-8748.
doi: 10.1016/j.jde.2017.08.047.![]() ![]() ![]() |
[26] |
Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, J. Differential Equations, 244 (2008), 1-23.
doi: 10.1016/j.jde.2007.10.009.![]() ![]() ![]() |
[27] |
M. Prizzi and K. P. Rybakowski, Attractors for semilinear damped wave equations on arbitrary unbounded domains, Topol. Methods Nonlinear Anal., 31 (2008), 49-82.
![]() ![]() |
[28] |
M. Prizzi and K. P. Rybakowski, Attractors for singularly perturbed damped wave equations on unbounded domains, Topol. Methods Nonlinear Anal., 32 (2008), 1-20.
![]() ![]() |
[29] |
B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, 185–192, Dresden, 1992.
![]() |
[30] |
G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002.
doi: 10.1007/978-1-4757-5037-9.![]() ![]() ![]() |
[31] |
C. Sun, M. Yang and C. Zhong, Global attractors for the wave equation with nonlinear damping, J. Differential Equation, 227 (2006), 427-443.
doi: 10.1016/j.jde.2005.09.010.![]() ![]() ![]() |
[32] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3.![]() ![]() ![]() |
[33] |
B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Physica D, 128 (1999), 41-52.
doi: 10.1016/S0167-2789(98)00304-2.![]() ![]() ![]() |
[34] |
B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains, J. Differential Equations, 246 (2009), 2506-2537.
doi: 10.1016/j.jde.2008.10.012.![]() ![]() ![]() |
[35] |
B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $ \mathbb{R}^3$, Trans. Amer. Math. Soc., 363 (2011), 3639-3663.
doi: 10.1090/S0002-9947-2011-05247-5.![]() ![]() ![]() |
[36] |
B. Wang, Asymptotic behavior of supercritical wave equations driven by colored noise on unbounded domains, Discrete Contin. Dyn. Syst. Ser. B, 2021.
doi: 10.3934/dcdsb. 2021223.![]() ![]() |
[37] |
B. Wang, Well-posedness and long term behavior of supercritical wave equations driven by nonlinear colored noise on $ \mathbb{R}^n$, J. Funct. Anal., 283 (2022), 109498.
doi: 10.1016/j.jfa.2022.109498.![]() ![]() ![]() |
[38] |
B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.
doi: 10.1016/j.jde.2012.05.015.![]() ![]() ![]() |
[39] |
B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.
doi: 10.3934/dcds.2014.34.269.![]() ![]() ![]() |
[40] |
B. Wang, Multivalued non-autonomous random dynamical systems for wave equations without uniqueness, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2011-2051.
doi: 10.3934/dcdsb.2017119.![]() ![]() ![]() |
[41] |
B. Wang, Random attractors of supercritical stochastic wave equations, Pure and Applied Functional Analysis, (in press).
![]() |
[42] |
R. Wang, L. Shi and B. Wang, Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on $\mathbb{R}^N$, Nonlinearity, 32 (2019), 4524-4556.
doi: 10.1088/1361-6544/ab32d7.![]() ![]() ![]() |
[43] |
X. Wang, D. Li and J. Shen, Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 2829-2855.
doi: 10.3934/dcdsb.2020207.![]() ![]() ![]() |
[44] |
X. Wang, K. Lu and B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 264 (2018), 378-424.
doi: 10.1016/j.jde.2017.09.006.![]() ![]() ![]() |
[45] |
Z. Wang and S. Zhou, Random attractor for stochastic non-autonomous damped wave equation with critical exponent, Discrete Contin. Dyn. Syst., 37 (2017), 545-573.
doi: 10.3934/dcds.2017022.![]() ![]() ![]() |
[46] |
Z. Wang, S. Zhou and A. Gu, Random attractors for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Anal. Real World Appl., 12 (2011), 3468-3482.
doi: 10.1016/j.nonrwa.2011.06.008.![]() ![]() ![]() |
[47] |
M. Yang, J. Duan and P. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise, Nonlinear Anal. Real World Appl., 12 (2011), 464-478.
doi: 10.1016/j.nonrwa.2010.06.032.![]() ![]() ![]() |
[48] |
S. Zhou and M. Zhao, Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise, Discrete Contin. Dyn. Syst., 36 (2016), 2887-2914.
doi: 10.3934/dcds.2016.36.2887.![]() ![]() ![]() |