• Previous Article
    Global existence and blow-up for the focusing inhomogeneous nonlinear Schrödinger equation with inverse-square potential
  • DCDS-B Home
  • This Issue
  • Next Article
    Double phase obstacle problems with multivalued convection and mixed boundary value conditions
doi: 10.3934/dcdsb.2022093
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Random attractors of supercritical wave equations driven by infinite-dimensional additive noise on $ \mathbb{R}^n $

Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA

* Corresponding author: Bixiang Wang

Received  February 2022 Revised  March 2022 Early access May 2022

In this paper, we prove the existence and uniqueness of tempered pullback random attractors of the supercritical stochastic wave equations driven by an infinite-dimensional additive white noise on $ \mathbb{R}^n $ with $ n\le 6 $. We first construct a tempered pullback random absorbing set in the natural energy space, and then establish the pullback asymptotic compactness of the solution operator by applying the idea of uniform tail-ends estimates as well as the uniform Strichartz estimates of solutions to circumvent the lack of compactness of Sobolev embeddings on unbounded domains.

Citation: Jianing Chen, Bixiang Wang. Random attractors of supercritical wave equations driven by infinite-dimensional additive noise on $ \mathbb{R}^n $. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2022093
References:
[1]

J. ArrietaA. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations, 17 (1992), 841-866.  doi: 10.1080/03605309208820866.

[2]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.

[3]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Continuous Dynamical Systems, 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.

[4]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.

[5]

P. W. BatesK. Lu and B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Phys. D, 289 (2014), 32-50.  doi: 10.1016/j.physd.2014.08.004.

[6]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443.  doi: 10.3934/dcds.2008.21.415.

[7]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439-455.  doi: 10.3934/dcdsb.2010.14.439.

[8]

T. CaraballoJ. A. LangaV. S. Melnik and J. Valero, Pullback attractors for nonautonomous and stochastic multivalued dynamical systems, Set-Valued Analysis, 11 (2003), 153-201.  doi: 10.1023/A:1022902802385.

[9]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dyn. Diff. Eqns., 9 (1997), 307-341.  doi: 10.1007/BF02219225.

[10]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.

[11]

X. Fan, Random attractors for damped stochastic wave equations with multiplicative noise, Internat. J. Math., 19 (2008), 421-437.  doi: 10.1142/S0129167X08004741.

[12]

E. Feireisl, Attractors for semilinear damped wave equations on $\mathbb{R}^3$, Nonlinear Anal., 23 (1994), 187-195.  doi: 10.1016/0362-546X(94)90041-8.

[13]

E. Feireisl, Asymptotic behavior and attractors for a semilinear damped equation with supercritical exponent, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 1051-1062.  doi: 10.1017/S0308210500022630.

[14]

F. Flandoli and B. Schmalfuss, Random attractors for the $3$D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.

[15]

J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., 133 (1995), 50-68.  doi: 10.1006/jfan.1995.1119.

[16]

A. GuB. Guo and B. Wang, Long term behavior of random Navier-Stokes equations driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 2495-2532.  doi: 10.3934/dcdsb.2020020.

[17]

A. Gu and B. Wang, Asymptotic behavior of random FitzHugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1689-1720.  doi: 10.3934/dcdsb.2018072.

[18]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988. doi: 10.1090/surv/025.

[19]

L. Kapitanski, Minimal compact global attractor for a damped semilinear wave equation, Comm. Partial Differential Equations, 20 (1995), 1303-1323.  doi: 10.1080/03605309508821133.

[20]

L. V. Kapitanskii, Cauchy problem for a semilinear wave equation, Ⅱ, J. Soviet Math., 62 (1992), 2746-2777.  doi: 10.1007/BF01671000.

[21]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.

[22]

O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Applied Mathematical Sciences Vol. 49, Springer, New York, 1985. doi: 10.1007/978-1-4757-4317-3.

[23]

H. LiY. You and J. Tu, Random attractors and averaging for non-autonomous stochastic wave equations with nonlinear damping, J. Differential Equations, 258 (2015), 148-190.  doi: 10.1016/j.jde.2014.09.007.

[24]

J. -L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.

[25]

C. LiuF. Meng and C. Sun, Well-posedness and attractors for a super-cubic weakly damped wave equation with $H^{-1} $ source term, J. Differential Equations, 263 (2017), 8718-8748.  doi: 10.1016/j.jde.2017.08.047.

[26]

Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, J. Differential Equations, 244 (2008), 1-23.  doi: 10.1016/j.jde.2007.10.009.

[27]

M. Prizzi and K. P. Rybakowski, Attractors for semilinear damped wave equations on arbitrary unbounded domains, Topol. Methods Nonlinear Anal., 31 (2008), 49-82. 

[28]

M. Prizzi and K. P. Rybakowski, Attractors for singularly perturbed damped wave equations on unbounded domains, Topol. Methods Nonlinear Anal., 32 (2008), 1-20. 

[29]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, 185–192, Dresden, 1992.

[30]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9.

[31]

C. SunM. Yang and C. Zhong, Global attractors for the wave equation with nonlinear damping, J. Differential Equation, 227 (2006), 427-443.  doi: 10.1016/j.jde.2005.09.010.

[32]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.

[33]

B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Physica D, 128 (1999), 41-52.  doi: 10.1016/S0167-2789(98)00304-2.

[34]

B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains, J. Differential Equations, 246 (2009), 2506-2537.  doi: 10.1016/j.jde.2008.10.012.

[35]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $ \mathbb{R}^3$, Trans. Amer. Math. Soc., 363 (2011), 3639-3663.  doi: 10.1090/S0002-9947-2011-05247-5.

[36]

B. Wang, Asymptotic behavior of supercritical wave equations driven by colored noise on unbounded domains, Discrete Contin. Dyn. Syst. Ser. B, 2021. doi: 10.3934/dcdsb. 2021223.

[37]

B. Wang, Well-posedness and long term behavior of supercritical wave equations driven by nonlinear colored noise on $ \mathbb{R}^n$, J. Funct. Anal., 283 (2022), 109498.  doi: 10.1016/j.jfa.2022.109498.

[38]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.

[39]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.

[40]

B. Wang, Multivalued non-autonomous random dynamical systems for wave equations without uniqueness, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2011-2051.  doi: 10.3934/dcdsb.2017119.

[41]

B. Wang, Random attractors of supercritical stochastic wave equations, Pure and Applied Functional Analysis, (in press).

[42]

R. WangL. Shi and B. Wang, Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on $\mathbb{R}^N$, Nonlinearity, 32 (2019), 4524-4556.  doi: 10.1088/1361-6544/ab32d7.

[43]

X. WangD. Li and J. Shen, Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 2829-2855.  doi: 10.3934/dcdsb.2020207.

[44]

X. WangK. Lu and B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 264 (2018), 378-424.  doi: 10.1016/j.jde.2017.09.006.

[45]

Z. Wang and S. Zhou, Random attractor for stochastic non-autonomous damped wave equation with critical exponent, Discrete Contin. Dyn. Syst., 37 (2017), 545-573.  doi: 10.3934/dcds.2017022.

[46]

Z. WangS. Zhou and A. Gu, Random attractors for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Anal. Real World Appl., 12 (2011), 3468-3482.  doi: 10.1016/j.nonrwa.2011.06.008.

[47]

M. YangJ. Duan and P. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise, Nonlinear Anal. Real World Appl., 12 (2011), 464-478.  doi: 10.1016/j.nonrwa.2010.06.032.

[48]

S. Zhou and M. Zhao, Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise, Discrete Contin. Dyn. Syst., 36 (2016), 2887-2914.  doi: 10.3934/dcds.2016.36.2887.

show all references

References:
[1]

J. ArrietaA. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations, 17 (1992), 841-866.  doi: 10.1080/03605309208820866.

[2]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.

[3]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Continuous Dynamical Systems, 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.

[4]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.

[5]

P. W. BatesK. Lu and B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Phys. D, 289 (2014), 32-50.  doi: 10.1016/j.physd.2014.08.004.

[6]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443.  doi: 10.3934/dcds.2008.21.415.

[7]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439-455.  doi: 10.3934/dcdsb.2010.14.439.

[8]

T. CaraballoJ. A. LangaV. S. Melnik and J. Valero, Pullback attractors for nonautonomous and stochastic multivalued dynamical systems, Set-Valued Analysis, 11 (2003), 153-201.  doi: 10.1023/A:1022902802385.

[9]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dyn. Diff. Eqns., 9 (1997), 307-341.  doi: 10.1007/BF02219225.

[10]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.

[11]

X. Fan, Random attractors for damped stochastic wave equations with multiplicative noise, Internat. J. Math., 19 (2008), 421-437.  doi: 10.1142/S0129167X08004741.

[12]

E. Feireisl, Attractors for semilinear damped wave equations on $\mathbb{R}^3$, Nonlinear Anal., 23 (1994), 187-195.  doi: 10.1016/0362-546X(94)90041-8.

[13]

E. Feireisl, Asymptotic behavior and attractors for a semilinear damped equation with supercritical exponent, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 1051-1062.  doi: 10.1017/S0308210500022630.

[14]

F. Flandoli and B. Schmalfuss, Random attractors for the $3$D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.

[15]

J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., 133 (1995), 50-68.  doi: 10.1006/jfan.1995.1119.

[16]

A. GuB. Guo and B. Wang, Long term behavior of random Navier-Stokes equations driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 2495-2532.  doi: 10.3934/dcdsb.2020020.

[17]

A. Gu and B. Wang, Asymptotic behavior of random FitzHugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1689-1720.  doi: 10.3934/dcdsb.2018072.

[18]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988. doi: 10.1090/surv/025.

[19]

L. Kapitanski, Minimal compact global attractor for a damped semilinear wave equation, Comm. Partial Differential Equations, 20 (1995), 1303-1323.  doi: 10.1080/03605309508821133.

[20]

L. V. Kapitanskii, Cauchy problem for a semilinear wave equation, Ⅱ, J. Soviet Math., 62 (1992), 2746-2777.  doi: 10.1007/BF01671000.

[21]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.

[22]

O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Applied Mathematical Sciences Vol. 49, Springer, New York, 1985. doi: 10.1007/978-1-4757-4317-3.

[23]

H. LiY. You and J. Tu, Random attractors and averaging for non-autonomous stochastic wave equations with nonlinear damping, J. Differential Equations, 258 (2015), 148-190.  doi: 10.1016/j.jde.2014.09.007.

[24]

J. -L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.

[25]

C. LiuF. Meng and C. Sun, Well-posedness and attractors for a super-cubic weakly damped wave equation with $H^{-1} $ source term, J. Differential Equations, 263 (2017), 8718-8748.  doi: 10.1016/j.jde.2017.08.047.

[26]

Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, J. Differential Equations, 244 (2008), 1-23.  doi: 10.1016/j.jde.2007.10.009.

[27]

M. Prizzi and K. P. Rybakowski, Attractors for semilinear damped wave equations on arbitrary unbounded domains, Topol. Methods Nonlinear Anal., 31 (2008), 49-82. 

[28]

M. Prizzi and K. P. Rybakowski, Attractors for singularly perturbed damped wave equations on unbounded domains, Topol. Methods Nonlinear Anal., 32 (2008), 1-20. 

[29]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, 185–192, Dresden, 1992.

[30]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9.

[31]

C. SunM. Yang and C. Zhong, Global attractors for the wave equation with nonlinear damping, J. Differential Equation, 227 (2006), 427-443.  doi: 10.1016/j.jde.2005.09.010.

[32]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.

[33]

B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Physica D, 128 (1999), 41-52.  doi: 10.1016/S0167-2789(98)00304-2.

[34]

B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains, J. Differential Equations, 246 (2009), 2506-2537.  doi: 10.1016/j.jde.2008.10.012.

[35]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $ \mathbb{R}^3$, Trans. Amer. Math. Soc., 363 (2011), 3639-3663.  doi: 10.1090/S0002-9947-2011-05247-5.

[36]

B. Wang, Asymptotic behavior of supercritical wave equations driven by colored noise on unbounded domains, Discrete Contin. Dyn. Syst. Ser. B, 2021. doi: 10.3934/dcdsb. 2021223.

[37]

B. Wang, Well-posedness and long term behavior of supercritical wave equations driven by nonlinear colored noise on $ \mathbb{R}^n$, J. Funct. Anal., 283 (2022), 109498.  doi: 10.1016/j.jfa.2022.109498.

[38]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.

[39]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.

[40]

B. Wang, Multivalued non-autonomous random dynamical systems for wave equations without uniqueness, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2011-2051.  doi: 10.3934/dcdsb.2017119.

[41]

B. Wang, Random attractors of supercritical stochastic wave equations, Pure and Applied Functional Analysis, (in press).

[42]

R. WangL. Shi and B. Wang, Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on $\mathbb{R}^N$, Nonlinearity, 32 (2019), 4524-4556.  doi: 10.1088/1361-6544/ab32d7.

[43]

X. WangD. Li and J. Shen, Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 2829-2855.  doi: 10.3934/dcdsb.2020207.

[44]

X. WangK. Lu and B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 264 (2018), 378-424.  doi: 10.1016/j.jde.2017.09.006.

[45]

Z. Wang and S. Zhou, Random attractor for stochastic non-autonomous damped wave equation with critical exponent, Discrete Contin. Dyn. Syst., 37 (2017), 545-573.  doi: 10.3934/dcds.2017022.

[46]

Z. WangS. Zhou and A. Gu, Random attractors for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Anal. Real World Appl., 12 (2011), 3468-3482.  doi: 10.1016/j.nonrwa.2011.06.008.

[47]

M. YangJ. Duan and P. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise, Nonlinear Anal. Real World Appl., 12 (2011), 464-478.  doi: 10.1016/j.nonrwa.2010.06.032.

[48]

S. Zhou and M. Zhao, Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise, Discrete Contin. Dyn. Syst., 36 (2016), 2887-2914.  doi: 10.3934/dcds.2016.36.2887.

[1]

Shuang Yang, Yangrong Li. Forward controllability of a random attractor for the non-autonomous stochastic sine-Gordon equation on an unbounded domain. Evolution Equations and Control Theory, 2020, 9 (3) : 581-604. doi: 10.3934/eect.2020025

[2]

S.V. Zelik. The attractor for a nonlinear hyperbolic equation in the unbounded domain. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 593-641. doi: 10.3934/dcds.2001.7.593

[3]

Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022

[4]

Bixiang Wang. Asymptotic behavior of supercritical wave equations driven by colored noise on unbounded domains. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4185-4229. doi: 10.3934/dcdsb.2021223

[5]

Zongming Guo, Xiaohong Guan, Yonggang Zhao. Uniqueness and asymptotic behavior of solutions of a biharmonic equation with supercritical exponent. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2613-2636. doi: 10.3934/dcds.2019109

[6]

Brahim Alouini, Olivier Goubet. Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 651-677. doi: 10.3934/dcdsb.2014.19.651

[7]

Zhijian Yang, Zhiming Liu. Global attractor for a strongly damped wave equation with fully supercritical nonlinearities. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2181-2205. doi: 10.3934/dcds.2017094

[8]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure and Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

[9]

Brahim Alouini. Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1781-1801. doi: 10.3934/cpaa.2015.14.1781

[10]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006

[11]

Neal Bez, Chris Jeavons. A sharp Sobolev-Strichartz estimate for the wave equation. Electronic Research Announcements, 2015, 22: 46-54. doi: 10.3934/era.2015.22.46

[12]

Fengjuan Meng, Chengkui Zhong. Multiple equilibrium points in global attractor for the weakly damped wave equation with critical exponent. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 217-230. doi: 10.3934/dcdsb.2014.19.217

[13]

M. Ben Ayed, Abdelbaki Selmi. Asymptotic behavior and existence results for a biharmonic equation involving the critical Sobolev exponent in a five-dimensional domain. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1705-1722. doi: 10.3934/cpaa.2010.9.1705

[14]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[15]

Xingni Tan, Fuqi Yin, Guihong Fan. Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3153-3170. doi: 10.3934/dcdsb.2020055

[16]

Renhai Wang, Yangrong Li. Backward compactness and periodicity of random attractors for stochastic wave equations with varying coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4145-4167. doi: 10.3934/dcdsb.2019054

[17]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[18]

Bixiang Wang, Xiaoling Gao. Random attractors for wave equations on unbounded domains. Conference Publications, 2009, 2009 (Special) : 800-809. doi: 10.3934/proc.2009.2009.800

[19]

Wenqiang Zhao. Pullback attractors for bi-spatial continuous random dynamical systems and application to stochastic fractional power dissipative equation on an unbounded domain. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3395-3438. doi: 10.3934/dcdsb.2018326

[20]

Seongyeon Kim, Yehyun Kwon, Ihyeok Seo. Strichartz estimates and local regularity for the elastic wave equation with singular potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1897-1911. doi: 10.3934/dcds.2020344

2021 Impact Factor: 1.497

Article outline

[Back to Top]