doi: 10.3934/dcdsb.2022111
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Global existence and blow-up for the focusing inhomogeneous nonlinear Schrödinger equation with inverse-square potential

Faculty of Mathematics, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea

*Corresponding author: Jinmyong Kim (jm.kim0211@ryongnamsan.edu.kp)

Received  September 2021 Revised  April 2022 Early access June 2022

In this paper, we study the Cauchy problem for the focusing inhomogeneous nonlinear Schrödinger equation with inverse-square potential
$ iu_{t} +\Delta u-c|x|^{-2}u+|x|^{-b} |u|^{\sigma } u=0,\; u(0)=u_{0} \in H_{c}^{1},\;(t, x)\in \mathbb R\times\mathbb R^{d}, $
where
$ d\ge3 $
,
$ 0<b<2 $
,
$ \frac{4-2b}{d}<\sigma<\frac{4-2b}{d-2} $
and
$ c>-c(d):=-\left(\frac{d-2}{2}\right)^{2} $
. We first establish the criteria for global existence and blow-up of general (not necessarily radial or finite variance) solutions to the equation. Using these criteria, we study the global existence and blow-up of solutions to the equation with general data lying below, at, and above the ground state threshold. Our results extend the global existence and blow-up results of Campos-Guzmán (Z. Angew. Math. Phys., 2021) and Dinh-Keraani (SIAM J. Math. Anal., 2021).
Citation: Jinmyong An, Roesong Jang, Jinmyong Kim. Global existence and blow-up for the focusing inhomogeneous nonlinear Schrödinger equation with inverse-square potential. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2022111
References:
[1]

J. An and J. Kim, Local well-posedness for the inhomogeneous nonlinear Schrödinger equation in $H^{s}(\mathbb R^{n})$, Nonlinear Anal. Real World Appl., 59 (2021), 103268.  doi: 10.1016/j.nonrwa.2020.103268.

[2]

J. An, J. Kim and K. Chae, Continuous dependence of the Cauchy problem for the inhomogeneous nonlinear Schrödinger equation in $H^{s}(\mathbb R^{n})$, Discrete Contin. Dyn. Syst. Ser. B, (2021). doi: 10.3934/dcdsb. 2021221.

[3]

A. H. Ardila and M. Cardoso, Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 20 (2021), 101-119.  doi: 10.3934/cpaa.2020259.

[4]

J. Belmonte-BeitiaV. M. Pérez-GarcíaV. Vekslerchik and P. J. Torres, Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities, Phys. Rev. Lett., 98 (2007), 064102.  doi: 10.1103/PhysRevLett.98.064102.

[5]

N. BurqF. PlanchonJ. G. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential, J. Funct. Anal., 203 (2003), 519-549.  doi: 10.1016/S0022-1236(03)00238-6.

[6]

L. Campos, Scattering of radial solutions to the inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal., 202 (2021), 112118.  doi: 10.1016/j.na.2020.112118.

[7]

L. Campos and C. M. Guzmán, On the inhomogeneous NLS with inverse-square potential, Z. Angew. Math. Phys., 72 (2021), Paper No. 143, 29 pp. doi: 10.1007/s00033-021-01560-4.

[8]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.

[9]

V. D. Dinh, Global exsitence and blowup for a class of focusing nonlinear Schrödinger equation with inverse-square potential, J. Math. Anal. Appl., 468 (2018), 270-303.  doi: 10.1016/j.jmaa.2018.08.006.

[10]

V. D. Dinh and S. Keraani, Long time dynamics of non-radial solutions to inhomogeneous nonlinear Schrödinger equations, SIAM J. Math. Anal., 53 (2021), 4765-4811.  doi: 10.1137/20M1383434.

[11]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.  doi: 10.1063/1.523491.

[12]

R. Jang, J. An and J. Kim, The Cauchy problem for the energy-critical inhomogeneous nonlinear Schrödinger equation with inverse–square potential, preprint, arXiv: 2107.09826.

[13]

H. Kalf, U. W. Schmincke, J. Walter and R. Wust, On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials, in: Spectral Theory and Differential Equations, in: Lect. Notes in Math., vol. 448, Springer, Berlin, 1975, pp. 182–226.

[14]

Y. V. KartashovB. A. MalomedV. A. VysloukhM. R. Belic and L. Torner, Rotating vortex clusters in media with inhomogeneous defocusing nonlinearity, Opt. Lett., 42 (2017), 446-449.  doi: 10.1364/OL.42.000446.

[15]

R. KillipC. MiaoM. VisanJ. Zhang and J. Zheng, The energy-critical NLS with inverse-square potential, Discrete Contin. Dyn. Syst., 37 (2017), 3831-3866.  doi: 10.3934/dcds.2017162.

[16]

R. KillipJ. MurphyM. Visan and J. Zheng, The focusing cubic NLS with inverse-square potential in three space dimensions, Differ. Integral Equ., 30 (2017), 161-206. 

[17]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, $2^nd$ edition, Universitext. Springer, New York, 2015. doi: 10.1007/978-1-4939-2181-2.

[18]

J. LuC. Miao and J. Murphy, Scattering in $H^{1}$ for the intercritical NLS with an inverse-square potential, J. Differential Equations, 264 (2018), 3174-3211.  doi: 10.1016/j.jde.2017.11.015.

[19]

T. Suzuki, Solvability of nonlinear Schrödinger equations with some critical singular potential via generalized Hardy-Rellich inequalities, Funkcial. Ekvac., 59 (2016), 1-34.  doi: 10.1619/fesi.59.1.

[20]

B. Wang, Z. Huo, C. Hao and Z. Guo, Harmonic Analysis Method for Nonlinear Evolution Equations, I, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011. doi: 10.1142/9789814360746.

[21]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87 (1983), 567-576. 

[22]

K. Yang, Scattering of the focusing energy-critical NLS with inverse-square potential in the radial case, Comm. Pure Appl. Anal., 20 (2021), 77-99.  doi: 10.3934/cpaa.2020258.

show all references

References:
[1]

J. An and J. Kim, Local well-posedness for the inhomogeneous nonlinear Schrödinger equation in $H^{s}(\mathbb R^{n})$, Nonlinear Anal. Real World Appl., 59 (2021), 103268.  doi: 10.1016/j.nonrwa.2020.103268.

[2]

J. An, J. Kim and K. Chae, Continuous dependence of the Cauchy problem for the inhomogeneous nonlinear Schrödinger equation in $H^{s}(\mathbb R^{n})$, Discrete Contin. Dyn. Syst. Ser. B, (2021). doi: 10.3934/dcdsb. 2021221.

[3]

A. H. Ardila and M. Cardoso, Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 20 (2021), 101-119.  doi: 10.3934/cpaa.2020259.

[4]

J. Belmonte-BeitiaV. M. Pérez-GarcíaV. Vekslerchik and P. J. Torres, Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities, Phys. Rev. Lett., 98 (2007), 064102.  doi: 10.1103/PhysRevLett.98.064102.

[5]

N. BurqF. PlanchonJ. G. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential, J. Funct. Anal., 203 (2003), 519-549.  doi: 10.1016/S0022-1236(03)00238-6.

[6]

L. Campos, Scattering of radial solutions to the inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal., 202 (2021), 112118.  doi: 10.1016/j.na.2020.112118.

[7]

L. Campos and C. M. Guzmán, On the inhomogeneous NLS with inverse-square potential, Z. Angew. Math. Phys., 72 (2021), Paper No. 143, 29 pp. doi: 10.1007/s00033-021-01560-4.

[8]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.

[9]

V. D. Dinh, Global exsitence and blowup for a class of focusing nonlinear Schrödinger equation with inverse-square potential, J. Math. Anal. Appl., 468 (2018), 270-303.  doi: 10.1016/j.jmaa.2018.08.006.

[10]

V. D. Dinh and S. Keraani, Long time dynamics of non-radial solutions to inhomogeneous nonlinear Schrödinger equations, SIAM J. Math. Anal., 53 (2021), 4765-4811.  doi: 10.1137/20M1383434.

[11]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.  doi: 10.1063/1.523491.

[12]

R. Jang, J. An and J. Kim, The Cauchy problem for the energy-critical inhomogeneous nonlinear Schrödinger equation with inverse–square potential, preprint, arXiv: 2107.09826.

[13]

H. Kalf, U. W. Schmincke, J. Walter and R. Wust, On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials, in: Spectral Theory and Differential Equations, in: Lect. Notes in Math., vol. 448, Springer, Berlin, 1975, pp. 182–226.

[14]

Y. V. KartashovB. A. MalomedV. A. VysloukhM. R. Belic and L. Torner, Rotating vortex clusters in media with inhomogeneous defocusing nonlinearity, Opt. Lett., 42 (2017), 446-449.  doi: 10.1364/OL.42.000446.

[15]

R. KillipC. MiaoM. VisanJ. Zhang and J. Zheng, The energy-critical NLS with inverse-square potential, Discrete Contin. Dyn. Syst., 37 (2017), 3831-3866.  doi: 10.3934/dcds.2017162.

[16]

R. KillipJ. MurphyM. Visan and J. Zheng, The focusing cubic NLS with inverse-square potential in three space dimensions, Differ. Integral Equ., 30 (2017), 161-206. 

[17]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, $2^nd$ edition, Universitext. Springer, New York, 2015. doi: 10.1007/978-1-4939-2181-2.

[18]

J. LuC. Miao and J. Murphy, Scattering in $H^{1}$ for the intercritical NLS with an inverse-square potential, J. Differential Equations, 264 (2018), 3174-3211.  doi: 10.1016/j.jde.2017.11.015.

[19]

T. Suzuki, Solvability of nonlinear Schrödinger equations with some critical singular potential via generalized Hardy-Rellich inequalities, Funkcial. Ekvac., 59 (2016), 1-34.  doi: 10.1619/fesi.59.1.

[20]

B. Wang, Z. Huo, C. Hao and Z. Guo, Harmonic Analysis Method for Nonlinear Evolution Equations, I, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011. doi: 10.1142/9789814360746.

[21]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87 (1983), 567-576. 

[22]

K. Yang, Scattering of the focusing energy-critical NLS with inverse-square potential in the radial case, Comm. Pure Appl. Anal., 20 (2021), 77-99.  doi: 10.3934/cpaa.2020258.

[1]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[2]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

[3]

Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169

[4]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control and Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[5]

Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827

[6]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[7]

Toshiyuki Suzuki. Scattering theory for semilinear Schrödinger equations with an inverse-square potential via energy methods. Evolution Equations and Control Theory, 2019, 8 (2) : 447-471. doi: 10.3934/eect.2019022

[8]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure and Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[9]

Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042

[10]

Toshiyuki Suzuki. Nonlinear Schrödinger equations with inverse-square potentials in two dimensional space. Conference Publications, 2015, 2015 (special) : 1019-1024. doi: 10.3934/proc.2015.1019

[11]

Yu Su. Ground state solution of critical Schrödinger equation with singular potential. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3347-3371. doi: 10.3934/cpaa.2021108

[12]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. $L^p$ Estimates for the wave equation with the inverse-square potential. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 427-442. doi: 10.3934/dcds.2003.9.427

[13]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. Dispersive estimate for the wave equation with the inverse-square potential. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1387-1400. doi: 10.3934/dcds.2003.9.1387

[14]

Jianqing Chen, Boling Guo. Sharp global existence and blowing up results for inhomogeneous Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 357-367. doi: 10.3934/dcdsb.2007.8.357

[15]

Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure and Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034

[16]

Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085

[17]

Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure and Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027

[18]

Van Duong Dinh. Blow-up criteria for linearly damped nonlinear Schrödinger equations. Evolution Equations and Control Theory, 2021, 10 (3) : 599-617. doi: 10.3934/eect.2020082

[19]

Jian Zhang, Wen Zhang, Xianhua Tang. Ground state solutions for Hamiltonian elliptic system with inverse square potential. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4565-4583. doi: 10.3934/dcds.2017195

[20]

Nadjat Doudi, Salah Boulaaras, Nadia Mezouar, Rashid Jan. Global existence, general decay and blow-up for a nonlinear wave equation with logarithmic source term and fractional boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022106

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (85)
  • HTML views (35)
  • Cited by (0)

Other articles
by authors

[Back to Top]