• Previous Article
    Permutation binary neural networks: Analysis of periodic orbits and its applications
  • DCDS-B Home
  • This Issue
  • Next Article
    Existence of compact $ \varphi $-attracting sets and estimate of their attractive velocity for infinite-dimensional dynamical systems
doi: 10.3934/dcdsb.2022112
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Ground state sign-changing solution for Schrödinger-Poisson system with steep potential well

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

*Corresponding author: Chun-Lei Tang

Received  November 2021 Revised  April 2022 Early access June 2022

Fund Project: This work is supported by National Natural Science Foundation of China (No.11971393)

In the present paper, we investigate a class of nonlinear Schrödinger-Poisson system
$ \begin{equation*} \begin{cases} -\Delta u+V_\lambda(x)u+\mu \phi u = f(u) \quad \quad \ {\rm{in}} \ {\mathbb{R}}^{3},\\ -\Delta \phi = u^2 \quad \quad \quad \quad \ \ \quad \quad \quad \quad \quad \quad {\rm{in}} \ {\mathbb{R}}^{3}, \end{cases} \end{equation*} $
where
$ \mu>0 $
and
$ V_\lambda(x) = \lambda V(x)+1 $
with
$ \lambda>0 $
. Under some mild assumptions on
$ V $
and
$ f $
, we prove the existence of ground state sign-changing solution for
$ \lambda>0 $
large enough by adopting the deformation lemma and constrained minimization arguments. Then, the least energy of sign-changing solutions is strictly large than two times the ground state energy. Additionally, the phenomenon of concentration for ground state sign-changing solutions is also analysed as
$ \lambda\rightarrow \infty $
and
$ \mu\rightarrow0 $
.
Citation: Jin-Cai Kang, Xiao-Qi Liu, Chun-Lei Tang. Ground state sign-changing solution for Schrödinger-Poisson system with steep potential well. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2022112
References:
[1]

T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on ${\mathbb{ R}}^N$, Comm. Partial Differential Equations, 20 (1995), 1725-1741.  doi: 10.1080/03605309508821149.

[2]

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293.  doi: 10.12775/TMNA.1998.019.

[3]

V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420.  doi: 10.1142/S0129055X02001168.

[4]

G. CeramiS. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal., 69 (1986), 289-306.  doi: 10.1016/0022-1236(86)90094-7.

[5]

S.-J. Chen and C.-L. Tang, High energy solutions for the superlinear Schrödinger-Maxwell equations, Nonlinear Anal., 71 (2009), 4927-4934.  doi: 10.1016/j.na.2009.03.050.

[6]

S. Chen and X. Tang, Ground state sign-changing solutions for asymptotically cubic or super-cubic Schrödinger-Poisson systems without compact condition, Comput. Math. Appl., 74 (2017), 446-458.  doi: 10.1016/j.camwa.2017.04.031.

[7]

S. ChenX. Tang and J. Peng, Existence and concentration of positive solutions for Schrödinger-Poisson systems with steep well potential, Studia Sci. Math. Hungar., 55 (2018), 53-93.  doi: 10.1556/012.2018.55.1.1388.

[8]

X. Chen and C. Tang, Least energy sign-changing solutions for Schrödinger-Poisson system with critical growth, Commun. Pure Appl. Anal., 20 (2021), 2291-2312.  doi: 10.3934/cpaa.2021077.

[9]

M. Du, L. Tian, J. Wang and F. Zhang, Existence and asymptotic behavior of solutions for nonlinear Schrödinger-Poisson systems with steep potential well, J. Math. Phys., 57 (2016), 031502, 19 pp. doi: 10.1063/1.4941036.

[10]

L. Gu, H. Jin and J. Zhang, Sign-changing solutions for nonlinear Schrödinger-Poisson systems with subquadratic or quadratic growth at infinity, Nonlinear Anal., 198 (2020), 111897, 16 pp. doi: 10.1016/j.na.2020.111897.

[11]

H. Guo and T. Wang, A note on sign-changing solutions for the schrödinger poisson system, Electronic Research Archive, 28 (2020), 195-203.  doi: 10.3934/era.2020013.

[12]

H. Hofer, Variational and topological methods in partially ordered Hilbert spaces, Math. Ann., 261 (1982), 493-514.  doi: 10.1007/BF01457453.

[13]

I. Ianni, Sign-changing radial solutions for the Schrödinger-Poisson-Slater problem, Topol. Methods Nonlinear Anal., 41 (2013), 365-385. 

[14]

C. Ji, F. Fang and B. Zhang, Least energy sign-changing solutions for the nonlinear Schrödinger-Poisson system, Electron. J. Differential Equations, 2017 (2017), 282, 13 pp.

[15]

Y. Jiang and H.-S. Zhou, Schrödinger-Poisson system with steep potential well, J. Differential Equations, 251 (2011), 582-608.  doi: 10.1016/j.jde.2011.05.006.

[16]

S. Kim and J. Seok, On nodal solutions of the nonlinear Schrödinger-Poisson equations, Commun. Contemp. Math., 14 (2012), 1250041, 16 pp. doi: 10.1142/S0219199712500411.

[17]

G. LiX. Luo and W. Shuai, Sign-changing solutions to a gauged nonlinear Schrödinger equation, J. Math. Anal. Appl., 455 (2017), 1559-1578.  doi: 10.1016/j.jmaa.2017.06.048.

[18]

S. Liu, On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, 45 (2012), 1-9.  doi: 10.1007/s00526-011-0447-2.

[19]

S. Liu and S. Mosconi, On the Schrödinger-Poisson system with indefinite potential and 3-sublinear nonlinearity, J. Differential Equations, 269 (2020), 689-712.  doi: 10.1016/j.jde.2019.12.023.

[20]

W. Liu and Z. Wang, Least energy nodal solution for nonlinear Schrödinger equation without (AR) condition, J. Math. Anal. Appl., 462 (2018), 285-297.  doi: 10.1016/j.jmaa.2018.02.005.

[21]

Z. LiuZ.-Q. Wang and J. Zhang, Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system, Ann. Mat. Pura Appl., 195 (2016), 775-794.  doi: 10.1007/s10231-015-0489-8.

[22]

Q.-J. Lou and Z.-Q. Han, The Nehari manifold for the Schrödinger-Poisson systems with steep well potential, Complex Var. Elliptic Equ., 64 (2019), 586-605.  doi: 10.1080/17476933.2018.1471070.

[23]

C. Miranda, Un'osservazione su un teorema di Brouwer, Boll. Unione Mat. Ital., 3 (1940), 5-7. 

[24]

E. G. Murcia and G. Siciliano, Least energy radial sign-changing solution for the Schrödinger-Poisson system in ${\mathbb{R}}^3$ under an asymptotically cubic nonlinearity, J. Math. Anal. Appl., 474 (2019), 544-571.  doi: 10.1016/j.jmaa.2019.01.063.

[25]

D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.  doi: 10.1016/j.jfa.2006.04.005.

[26]

W. Shuai and Q. Wang, Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger-Poisson system in ${\mathbb{ R}}^3$, Z. Angew. Math. Phys., 66 (2015), 3267-3282.  doi: 10.1007/s00033-015-0571-5.

[27]

J. Sun and T.-f. Wu, Bound state nodal solutions for the non-autonomous Schrödinger-Poisson system in ${\mathbb{R}}^3$, J. Differential Equations, 268 (2020), 7121-7163.  doi: 10.1016/j.jde.2019.11.070.

[28]

J. Sun and T.-f. Wu, On Schrödinger-Poisson systems under the effect of steep potential well $(2 < p < 4)$, J. Math. Phys., 61 (2020), 071506, 13 pp. doi: 10.1063/1.5114672.

[29]

J. Sun, T.-F. Wu and Y. Wu, Existence of nontrivial solution for Schrödinger-Poisson systems with indefinite steep potential well, Z. Angew. Math. Phys., 68 (2017), 22 pp. doi: 10.1007/s00033-017-0817-5.

[30]

Z. Wang and H.-S. Zhou, Sign-changing solutions for the nonlinear Schrödinger-Poisson system in ${\mathbb{R}}^3$, Calc. Var. Partial Differential Equations, 52 (2015), 927-943.  doi: 10.1007/s00526-014-0738-5.

[31]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982), 567-576. 

[32]

T. Weth, Energy bounds for entire nodal solutions of autonomous superlinear equations, Calc. Var. Partial Differ. Equ., 27 (2006), 421-437.  doi: 10.1007/s00526-006-0015-3.

[33]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, vol. 24, Birkhäuser, Boston, Mass., 1996. doi: 10.1007/978-1-4612-4146-1.

[34]

Y. Ye and C.-L. Tang, Existence and multiplicity of solutions for Schrödinger-Poisson equations with sign-changing potential, Calc. Var. Partial Differential Equations, 53 (2015), 383-411.  doi: 10.1007/s00526-014-0753-6.

[35]

L.-F. Yin, X.-P. Wu and C.-L. Tang, Existence and concentration of ground state solutions for critical Schrödinger-Poisson system with steep potential well, Appl. Math. Comput., 374 (2020), 125035, 12 pp. doi: 10.1016/j.amc.2020.125035.

[36]

W. ZhangX. Tang and J. Zhang, Existence and concentration of solutions for Schrödinger-Poisson system with steep potential well, Math. Methods Appl. Sci., 39 (2016), 2549-2557.  doi: 10.1002/mma.3712.

[37]

L. ZhaoH. Liu and F. Zhao, Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential, J. Differential Equations, 255 (2013), 1-23.  doi: 10.1016/j.jde.2013.03.005.

[38]

X.-J. Zhong and C.-L. Tang, Ground state sign-changing solutions for a Schrödinger-Poisson system with a 3-linear growth nonlinearity, J. Math. Anal. Appl., 455 (2017), 1956-1974.  doi: 10.1016/j.jmaa.2017.04.010.

[39]

X.-J. Zhong and C.-L. Tang, Ground state sign-changing solutions for a Schrödinger-Poisson system with a critical nonlinearity in ${\mathbb{R}}^3$, Nonlinear Anal. Real World Appl., 39 (2018), 166-184.  doi: 10.1016/j.nonrwa.2017.06.014.

show all references

References:
[1]

T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on ${\mathbb{ R}}^N$, Comm. Partial Differential Equations, 20 (1995), 1725-1741.  doi: 10.1080/03605309508821149.

[2]

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293.  doi: 10.12775/TMNA.1998.019.

[3]

V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420.  doi: 10.1142/S0129055X02001168.

[4]

G. CeramiS. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal., 69 (1986), 289-306.  doi: 10.1016/0022-1236(86)90094-7.

[5]

S.-J. Chen and C.-L. Tang, High energy solutions for the superlinear Schrödinger-Maxwell equations, Nonlinear Anal., 71 (2009), 4927-4934.  doi: 10.1016/j.na.2009.03.050.

[6]

S. Chen and X. Tang, Ground state sign-changing solutions for asymptotically cubic or super-cubic Schrödinger-Poisson systems without compact condition, Comput. Math. Appl., 74 (2017), 446-458.  doi: 10.1016/j.camwa.2017.04.031.

[7]

S. ChenX. Tang and J. Peng, Existence and concentration of positive solutions for Schrödinger-Poisson systems with steep well potential, Studia Sci. Math. Hungar., 55 (2018), 53-93.  doi: 10.1556/012.2018.55.1.1388.

[8]

X. Chen and C. Tang, Least energy sign-changing solutions for Schrödinger-Poisson system with critical growth, Commun. Pure Appl. Anal., 20 (2021), 2291-2312.  doi: 10.3934/cpaa.2021077.

[9]

M. Du, L. Tian, J. Wang and F. Zhang, Existence and asymptotic behavior of solutions for nonlinear Schrödinger-Poisson systems with steep potential well, J. Math. Phys., 57 (2016), 031502, 19 pp. doi: 10.1063/1.4941036.

[10]

L. Gu, H. Jin and J. Zhang, Sign-changing solutions for nonlinear Schrödinger-Poisson systems with subquadratic or quadratic growth at infinity, Nonlinear Anal., 198 (2020), 111897, 16 pp. doi: 10.1016/j.na.2020.111897.

[11]

H. Guo and T. Wang, A note on sign-changing solutions for the schrödinger poisson system, Electronic Research Archive, 28 (2020), 195-203.  doi: 10.3934/era.2020013.

[12]

H. Hofer, Variational and topological methods in partially ordered Hilbert spaces, Math. Ann., 261 (1982), 493-514.  doi: 10.1007/BF01457453.

[13]

I. Ianni, Sign-changing radial solutions for the Schrödinger-Poisson-Slater problem, Topol. Methods Nonlinear Anal., 41 (2013), 365-385. 

[14]

C. Ji, F. Fang and B. Zhang, Least energy sign-changing solutions for the nonlinear Schrödinger-Poisson system, Electron. J. Differential Equations, 2017 (2017), 282, 13 pp.

[15]

Y. Jiang and H.-S. Zhou, Schrödinger-Poisson system with steep potential well, J. Differential Equations, 251 (2011), 582-608.  doi: 10.1016/j.jde.2011.05.006.

[16]

S. Kim and J. Seok, On nodal solutions of the nonlinear Schrödinger-Poisson equations, Commun. Contemp. Math., 14 (2012), 1250041, 16 pp. doi: 10.1142/S0219199712500411.

[17]

G. LiX. Luo and W. Shuai, Sign-changing solutions to a gauged nonlinear Schrödinger equation, J. Math. Anal. Appl., 455 (2017), 1559-1578.  doi: 10.1016/j.jmaa.2017.06.048.

[18]

S. Liu, On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, 45 (2012), 1-9.  doi: 10.1007/s00526-011-0447-2.

[19]

S. Liu and S. Mosconi, On the Schrödinger-Poisson system with indefinite potential and 3-sublinear nonlinearity, J. Differential Equations, 269 (2020), 689-712.  doi: 10.1016/j.jde.2019.12.023.

[20]

W. Liu and Z. Wang, Least energy nodal solution for nonlinear Schrödinger equation without (AR) condition, J. Math. Anal. Appl., 462 (2018), 285-297.  doi: 10.1016/j.jmaa.2018.02.005.

[21]

Z. LiuZ.-Q. Wang and J. Zhang, Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system, Ann. Mat. Pura Appl., 195 (2016), 775-794.  doi: 10.1007/s10231-015-0489-8.

[22]

Q.-J. Lou and Z.-Q. Han, The Nehari manifold for the Schrödinger-Poisson systems with steep well potential, Complex Var. Elliptic Equ., 64 (2019), 586-605.  doi: 10.1080/17476933.2018.1471070.

[23]

C. Miranda, Un'osservazione su un teorema di Brouwer, Boll. Unione Mat. Ital., 3 (1940), 5-7. 

[24]

E. G. Murcia and G. Siciliano, Least energy radial sign-changing solution for the Schrödinger-Poisson system in ${\mathbb{R}}^3$ under an asymptotically cubic nonlinearity, J. Math. Anal. Appl., 474 (2019), 544-571.  doi: 10.1016/j.jmaa.2019.01.063.

[25]

D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.  doi: 10.1016/j.jfa.2006.04.005.

[26]

W. Shuai and Q. Wang, Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger-Poisson system in ${\mathbb{ R}}^3$, Z. Angew. Math. Phys., 66 (2015), 3267-3282.  doi: 10.1007/s00033-015-0571-5.

[27]

J. Sun and T.-f. Wu, Bound state nodal solutions for the non-autonomous Schrödinger-Poisson system in ${\mathbb{R}}^3$, J. Differential Equations, 268 (2020), 7121-7163.  doi: 10.1016/j.jde.2019.11.070.

[28]

J. Sun and T.-f. Wu, On Schrödinger-Poisson systems under the effect of steep potential well $(2 < p < 4)$, J. Math. Phys., 61 (2020), 071506, 13 pp. doi: 10.1063/1.5114672.

[29]

J. Sun, T.-F. Wu and Y. Wu, Existence of nontrivial solution for Schrödinger-Poisson systems with indefinite steep potential well, Z. Angew. Math. Phys., 68 (2017), 22 pp. doi: 10.1007/s00033-017-0817-5.

[30]

Z. Wang and H.-S. Zhou, Sign-changing solutions for the nonlinear Schrödinger-Poisson system in ${\mathbb{R}}^3$, Calc. Var. Partial Differential Equations, 52 (2015), 927-943.  doi: 10.1007/s00526-014-0738-5.

[31]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982), 567-576. 

[32]

T. Weth, Energy bounds for entire nodal solutions of autonomous superlinear equations, Calc. Var. Partial Differ. Equ., 27 (2006), 421-437.  doi: 10.1007/s00526-006-0015-3.

[33]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, vol. 24, Birkhäuser, Boston, Mass., 1996. doi: 10.1007/978-1-4612-4146-1.

[34]

Y. Ye and C.-L. Tang, Existence and multiplicity of solutions for Schrödinger-Poisson equations with sign-changing potential, Calc. Var. Partial Differential Equations, 53 (2015), 383-411.  doi: 10.1007/s00526-014-0753-6.

[35]

L.-F. Yin, X.-P. Wu and C.-L. Tang, Existence and concentration of ground state solutions for critical Schrödinger-Poisson system with steep potential well, Appl. Math. Comput., 374 (2020), 125035, 12 pp. doi: 10.1016/j.amc.2020.125035.

[36]

W. ZhangX. Tang and J. Zhang, Existence and concentration of solutions for Schrödinger-Poisson system with steep potential well, Math. Methods Appl. Sci., 39 (2016), 2549-2557.  doi: 10.1002/mma.3712.

[37]

L. ZhaoH. Liu and F. Zhao, Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential, J. Differential Equations, 255 (2013), 1-23.  doi: 10.1016/j.jde.2013.03.005.

[38]

X.-J. Zhong and C.-L. Tang, Ground state sign-changing solutions for a Schrödinger-Poisson system with a 3-linear growth nonlinearity, J. Math. Anal. Appl., 455 (2017), 1956-1974.  doi: 10.1016/j.jmaa.2017.04.010.

[39]

X.-J. Zhong and C.-L. Tang, Ground state sign-changing solutions for a Schrödinger-Poisson system with a critical nonlinearity in ${\mathbb{R}}^3$, Nonlinear Anal. Real World Appl., 39 (2018), 166-184.  doi: 10.1016/j.nonrwa.2017.06.014.

[1]

Xiaoping Chen, Chunlei Tang. Least energy sign-changing solutions for Schrödinger-Poisson system with critical growth. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2291-2312. doi: 10.3934/cpaa.2021077

[2]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1497-1519. doi: 10.3934/cpaa.2021030

[3]

Hui Guo, Tao Wang. A note on sign-changing solutions for the Schrödinger Poisson system. Electronic Research Archive, 2020, 28 (1) : 195-203. doi: 10.3934/era.2020013

[4]

Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499

[5]

Daniele Cassani, Luca Vilasi, Jianjun Zhang. Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1737-1754. doi: 10.3934/cpaa.2021039

[6]

César E. Torres Ledesma. Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well. Communications on Pure and Applied Analysis, 2016, 15 (2) : 535-547. doi: 10.3934/cpaa.2016.15.535

[7]

Margherita Nolasco. Breathing modes for the Schrödinger-Poisson system with a multiple--well external potential. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1411-1419. doi: 10.3934/cpaa.2010.9.1411

[8]

Hongxia Shi, Haibo Chen. Infinitely many solutions for generalized quasilinear Schrödinger equations with sign-changing potential. Communications on Pure and Applied Analysis, 2018, 17 (1) : 53-66. doi: 10.3934/cpaa.2018004

[9]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[10]

Kaimin Teng, Xian Wu. Concentration of bound states for fractional Schrödinger-Poisson system via penalization methods. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1157-1187. doi: 10.3934/cpaa.2022014

[11]

Zhengping Wang, Huan-Song Zhou. Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 809-816. doi: 10.3934/dcds.2007.18.809

[12]

Thomas Bartsch, Zhongwei Tang. Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 7-26. doi: 10.3934/dcds.2013.33.7

[13]

Jincai Kang, Chunlei Tang. Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5239-5252. doi: 10.3934/cpaa.2020235

[14]

Bartosz Bieganowski, Jaros law Mederski. Nonlinear SchrÖdinger equations with sum of periodic and vanishing potentials and sign-changing nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (1) : 143-161. doi: 10.3934/cpaa.2018009

[15]

Yohei Sato. Sign-changing multi-peak solutions for nonlinear Schrödinger equations with critical frequency. Communications on Pure and Applied Analysis, 2008, 7 (4) : 883-903. doi: 10.3934/cpaa.2008.7.883

[16]

Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025

[17]

Zhi Chen, Xianhua Tang, Ning Zhang, Jian Zhang. Standing waves for Schrödinger-Poisson system with general nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 6103-6129. doi: 10.3934/dcds.2019266

[18]

Chunhua Wang, Jing Yang. Positive solutions for a nonlinear Schrödinger-Poisson system. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5461-5504. doi: 10.3934/dcds.2018241

[19]

Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1819-1835. doi: 10.3934/dcdss.2021038

[20]

Rong Cheng, Jun Wang. Existence of ground states for Schrödinger-Poisson system with nonperiodic potentials. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021317

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (105)
  • HTML views (36)
  • Cited by (0)

Other articles
by authors

[Back to Top]