We establish a smoothing result for the generalized KdV (gKdV) on the torus with polynomial non-linearity, damping, and forcing that matches the smoothing level for the gKdV at $ H^1 $. As a consequence, we establish the existence of a global attractor for this equation as well as its compactness in $ H^s(\mathbb{T}) $, $ s\in (1, 2). $
Citation: |
[1] | J. Bao and Y. Wu, Global well-posedness for the periodic generalized Korteweg–de Vries equations, Indiana Univ. Math. J., 66 (2017), 1797-1825. doi: 10.1512/iumj.2017.66.6135. |
[2] | J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Geom. Funct. Anal., 3 (1993), 209-262. doi: 10.1007/BF01895688. |
[3] | J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\mathbb R$ and $\mathbb T$, J. Amer. Math. Soc., 16 (2003), 705-749. doi: 10.1090/S0894-0347-03-00421-1. |
[4] | J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Multilinear estimates for periodic KdV equations, and applications, J. Funct. Anal., 211 (2004), 173-218. doi: 10.1016/S0022-1236(03)00218-0. |
[5] | J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Resonant decompositions and the $ {I} $-method for the cubic nonlinear Schrödinger equation on $\mathbb{R}^2$, Discrete Contin. Dyn. Syst., 21 (2008), 665-686. doi: 10.3934/dcds.2008.21.665. |
[6] | J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., 33 (2001), 649-669. doi: 10.1137/S0036141001384387. |
[7] | S. Correia and J. D. Silva, Nonlinear smoothing for dispersive PDE: A unified approach, J. Differential Equations, 269 (2020), 4253-4285. doi: 10.1016/j.jde.2020.03.038. |
[8] | T. Dlotko, M. B. Kania and M. Yang, Generalized Korteweg-de Vries equation in $H^1(\mathbb R)$, Nonlinear Anal., 71 (2009), 3934-3947. doi: 10.1016/j.na.2009.02.062. |
[9] | M. B. Erdoğan, T. B. Gurel and N. Tzirakis, Smoothing for the fractional Schrödinger equation on the torus and the real line, Indiana Univ. Math. J., 68 (2019), 369-392. doi: 10.1512/iumj.2019.68.7618. |
[10] | M. B. Erdoğan and N. Tzirakis, Dispersive Partial Differential Equations: Wellposedness and Applications, vol. 86, Cambridge University Press, 2016. doi: 10.1017/CBO9781316563267. |
[11] | M. B. Erdoğan and N. Tzirakis, Long time dynamics for forced and weakly damped KdV on the torus, Commun. Pure Appl. Anal., 12 (2013), 2669-2684. doi: 10.3934/cpaa.2013.12.2669. |
[12] | M. B. Erdoğan and N. Tzirakis, Global smoothing for the periodic KdV evolution, Int. Math. Res. Not. IMRN, 2013 (2013), 4589-4614. doi: 10.1093/imrn/rns189. |
[13] | L. G. Farah, F. Linares and A. Pastor, The supercritical generalized KdV equation: Global well-posedness in the energy space and below, Math. Res. Lett., 18 (2011), 357-377. doi: 10.4310/MRL.2011.v18.n2.a13. |
[14] | O. Goubet, Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations, Discrete Contin. Dynam. Systems, 6 (2000), 625-644. doi: 10.3934/dcds.2000.6.625. |
[15] | O. Goubet, Analyticity of the global attractor for damped forced periodic Korteweg–de Vries equation, J. Differential Equations, 264 (2018), 3052-3066. doi: 10.1016/j.jde.2017.11.010. |
[16] | P. Goyal, Global attractor for weakly damped, forced mKdV equation below energy space, Nagoya Math. J., 241 (2021), 171-203. doi: 10.1017/nmj.2019.17. |
[17] | P. Goyal, Global attractor for weakly damped, forced mKdV equation in low regularity spaces, São Paulo Journal of Mathematical Sciences, 1–23. |
[18] | T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, in Spectral Theory and Differential Equations, Springer, 1975, 25–70. |
[19] | C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620. doi: 10.1002/cpa.3160460405. |
[20] | C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603. doi: 10.1090/S0894-0347-96-00200-7. |
[21] | R. Killip and M. Vişan, KdV is well-posed in $H^{-1}$, Ann. of Math. (2), 190 (2019), 249-305. doi: 10.4007/annals.2019.190.1.4. |
[22] | S. Oh, Resonant phase-shift and global smoothing of the periodic Korteweg-de Vries equation in low regularity settings, Adv. Differential Equations, 18 (2013), 633-662. |
[23] | S. Oh and A. G. Stefanov, Smoothing and growth bound of periodic generalized Korteweg–De Vries equation, J. Hyperbolic Differ. Equ., 18 (2021), 899-930. doi: 10.1142/S0219891621500260. |
[24] | R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, vol. 68 of Applied Mathematical Sciences, 2nd edition, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3. |
[25] | K. Tsugawa, Existence of the global attractor for weakly damped, forced KdV equation on Sobolev spaces of negative index, Commun. Pure Appl. Anal., 3 (2004), 301-318. doi: 10.3934/cpaa.2004.3.301. |
[26] | M. Wang, Global attractor for weakly damped gKdV equations in higher Sobolev spaces, Discrete Contin. Dyn. Syst., 35 (2015), 3799-3825. doi: 10.3934/dcds.2015.35.3799. |
[27] | M. Wang and J. Huang, The global attractor for the weakly damped KdV equation on $\mathbb R$ has a finite fractal dimension, Math. Methods Appl. Sci., 43 (2020), 4567-4584. doi: 10.1002/mma.6215. |
[28] | M. Wang, D. Li, C. Zhang and Y. Tang, Long time behavior of solutions of gKdV equations, J. Math. Anal. Appl., 390 (2012), 136-150. doi: 10.1016/j.jmaa.2012.01.031. |
[29] | X. Yang, Global attractor for the weakly damped forced KdV equation in Sobolev spaces of low regularity, NoDEA Nonlinear Differential Equations Appl., 18 (2011), 273-285. doi: 10.1007/s00030-010-0095-9. |