• Previous Article
    Global asymptotic stability of constant equilibrium in a nonlocal diffusion competition model with free boundaries
  • DCDS-B Home
  • This Issue
  • Next Article
    Global solvability to the 3D incompressible magneto-micropolar system with vacuum
doi: 10.3934/dcdsb.2022117
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Stability and dynamics of spike-type solutions to delayed Gierer-Meinhardt equations

1. 

Department of Mathematics, Simon Fraser University, British Columbia, Canada

2. 

Current affiliation: Department of Mathematics, Columbia College, British Columbia, Canada

3. 

Department of Mathematics, Dalhousie University, Nova Scotia, Canada

* Corresponding author: David Iron

Received  May 2021 Revised  May 2022 Early access June 2022

For a specific set of parameters, we analyze the stability of a one-spike equilibrium solution to the one-dimensional Gierer-Meinhardt reaction-diffusion model with delay in the components of the reaction-kinetics terms. Assuming slow activator diffusivity, we consider instabilities due to Hopf bifurcation in both the spike position and the spike profile for increasing values of the time-delay parameter $ T $. Using method of matched asymptotic expansions it is shown that the model can be reduced to a system of ordinary differential equations representing the position of the slowly evolving spike solution. The reduced evolution equations for the one-spike solution undergoes a Hopf bifurcation in the spike position in two cases: when the negative feedback of the activator equation is delayed, and when delay is in both the negative feedback of the activator equation and the non-linear production term of the inhibitor equation. Instabilities in the spike profile are also considered, and it is shown that the spike solution is unstable as $ T $ is increased beyond a critical Hopf bifurcation value $ T_H $, and this occurs for the same cases as in the spike position analysis. In all cases, the instability in the profile is triggered before the positional instability. If however the degradation of activator is delayed, we find stable positional oscillations can occur in this system.

Citation: Nancy Khalil, David Iron, Theodore Kolokolnikov. Stability and dynamics of spike-type solutions to delayed Gierer-Meinhardt equations. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2022117
References:
[1]

U. M. AscherS. J. Ruuth and R. J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math., 25 (1997), 151-167.  doi: 10.1016/S0168-9274(97)00056-1.

[2]

S. Chen and J. Shi, Global attractivity of equlibrium in Gierer-Meinhardt system with activator production saturation and gene expression time delays, Nonlinear Anal. Real World Appl., 14 (2013), 1871-1886.  doi: 10.1016/j.nonrwa.2012.12.004.

[3]

X. Chen and M. Kowalcyzk, Dynamics of an interior spike in the Gierer-Meinhardt system, SIAM J. Math. Anal., 33 (2001), 172-193.  doi: 10.1137/S0036141099364954.

[4]

N. Fadai, M. J. Ward and J. Wei, The stability of spikes in the Gierer-Meinhardt model with delayed reaction-kinetics, to be submitted, SIAM J. Appl. Math., (2015), 23 pp.

[5]

N. FadaiM. J. Ward and J. Wei, A time-delay in the activator kinetics enhances the stability of a spike solution to the Gierer-Meinhardt model, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1431-1458.  doi: 10.3934/dcdsb.2018158.

[6]

A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.  doi: 10.1007/BF00289234.

[7]

D. Iron and M. J. Ward, A metastable spike solution for a non-local reaction-diffusion model, SIAM J. Appl. Math., 60 (2000), 778-802.  doi: 10.1137/S0036139998338340.

[8]

D. Iron and M. J. Ward, The dynamics of multispike solutions to the one-dimensional Gierer-Meinhardt model, SIAM J. Appl. Math., 62 (2002), 1924-1951.  doi: 10.1137/S0036139901393676.

[9]

D. IronM. J. Ward and J. Wei, The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Physica D, 150 (2001), 25-62.  doi: 10.1016/S0167-2789(00)00206-2.

[10]

T. Kolokolnikov and J. Wei, Stability of spike solutions in a competition model with cross-diffusion, SIAM J. Appl. Math., 71 (2011), 1428-1457.  doi: 10.1137/100808381.

[11]

C. Levy and D. Iron, Dynamics and stability of a three-dimensional model of cell signal transduction with delay, Nonlinearity, 28 (2015), 2515-2553.  doi: 10.1088/0951-7715/28/7/2515.

[12]

Y. Nec and M. J. Ward, An explicitly solvable nonlocal eigenvalue problem and the stability of a spike for a sub-diffusive reaction-diffusion system, Math. Model. of Nat. Phenom., 8 (2013), 55-87.  doi: 10.1051/mmnp/20138205.

[13]

S. Seirin LeeE. A. Gaffney and N. A. M. Monk, The influence of gene expression time delays on Gierer-Meinhardt pattern formation systems, Bull. Math. Biol., 72 (2010), 2139-2160.  doi: 10.1007/s11538-010-9532-5.

[14]

S. Seirin LeeE. A. Gaffney and N. A. M. Monk, The influence of gene expression time delays on Gierer-Meinhardt pattern formation systems, Bull. Math. Bio., 72 (2010), 2139-2160.  doi: 10.1007/s11538-010-9532-5.

[15]

A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 327 (1952), 37-72.  doi: 10.1098/rstb.1952.0012.

[16]

M. Van Dyke, Perturbation Methods in Fluid Mechanics, Applied Mathematics and Mechanics, 8, 1964.

[17]

M. J. Ward and J. Wei, Hopf bifurcation of spike solutions for the shadow Gierer-Meinhardt model, Europ. J. Appl. Math., 14 (2003), 677-711.  doi: 10.1017/S0956792503005278.

[18]

M. J. Ward and J. Wei, Hopf bifurcation and oscillatory instabilities of spike solutions for the one-dimensional Gierer-Meinhardt model, J. Nonlinear Science, 13 (2003), 209-264.  doi: 10.1007/s00332-002-0531-z.

[19]

J. Wei, On single interior spike solutions for the Gierer-Meinhardt system: Uniqueness and stability estimates, Europ. J. Appl. Math., 10 (1999), 353-378.  doi: 10.1017/S0956792599003770.

[20]

J. Wei, Existence and stability of spikes for the Gierer-Meinhardt system, book chapter in Handbook of Differential Equations, Stationary Partial Differential Equations, Vol. 5 (M. Chipot ed.), Elsevier, (2008), 489–585. doi: 10.1016/S1874-5733(08)80013-7.

[21]

J. Wei and M. Winter, Spikes for the two-dimensional Gierer-Meinhardt system: The weak coupling case, J. Nonlinear Sci., 11 (2001), 415-458.  doi: 10.1007/s00332-001-0380-1.

show all references

References:
[1]

U. M. AscherS. J. Ruuth and R. J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math., 25 (1997), 151-167.  doi: 10.1016/S0168-9274(97)00056-1.

[2]

S. Chen and J. Shi, Global attractivity of equlibrium in Gierer-Meinhardt system with activator production saturation and gene expression time delays, Nonlinear Anal. Real World Appl., 14 (2013), 1871-1886.  doi: 10.1016/j.nonrwa.2012.12.004.

[3]

X. Chen and M. Kowalcyzk, Dynamics of an interior spike in the Gierer-Meinhardt system, SIAM J. Math. Anal., 33 (2001), 172-193.  doi: 10.1137/S0036141099364954.

[4]

N. Fadai, M. J. Ward and J. Wei, The stability of spikes in the Gierer-Meinhardt model with delayed reaction-kinetics, to be submitted, SIAM J. Appl. Math., (2015), 23 pp.

[5]

N. FadaiM. J. Ward and J. Wei, A time-delay in the activator kinetics enhances the stability of a spike solution to the Gierer-Meinhardt model, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1431-1458.  doi: 10.3934/dcdsb.2018158.

[6]

A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.  doi: 10.1007/BF00289234.

[7]

D. Iron and M. J. Ward, A metastable spike solution for a non-local reaction-diffusion model, SIAM J. Appl. Math., 60 (2000), 778-802.  doi: 10.1137/S0036139998338340.

[8]

D. Iron and M. J. Ward, The dynamics of multispike solutions to the one-dimensional Gierer-Meinhardt model, SIAM J. Appl. Math., 62 (2002), 1924-1951.  doi: 10.1137/S0036139901393676.

[9]

D. IronM. J. Ward and J. Wei, The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Physica D, 150 (2001), 25-62.  doi: 10.1016/S0167-2789(00)00206-2.

[10]

T. Kolokolnikov and J. Wei, Stability of spike solutions in a competition model with cross-diffusion, SIAM J. Appl. Math., 71 (2011), 1428-1457.  doi: 10.1137/100808381.

[11]

C. Levy and D. Iron, Dynamics and stability of a three-dimensional model of cell signal transduction with delay, Nonlinearity, 28 (2015), 2515-2553.  doi: 10.1088/0951-7715/28/7/2515.

[12]

Y. Nec and M. J. Ward, An explicitly solvable nonlocal eigenvalue problem and the stability of a spike for a sub-diffusive reaction-diffusion system, Math. Model. of Nat. Phenom., 8 (2013), 55-87.  doi: 10.1051/mmnp/20138205.

[13]

S. Seirin LeeE. A. Gaffney and N. A. M. Monk, The influence of gene expression time delays on Gierer-Meinhardt pattern formation systems, Bull. Math. Biol., 72 (2010), 2139-2160.  doi: 10.1007/s11538-010-9532-5.

[14]

S. Seirin LeeE. A. Gaffney and N. A. M. Monk, The influence of gene expression time delays on Gierer-Meinhardt pattern formation systems, Bull. Math. Bio., 72 (2010), 2139-2160.  doi: 10.1007/s11538-010-9532-5.

[15]

A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 327 (1952), 37-72.  doi: 10.1098/rstb.1952.0012.

[16]

M. Van Dyke, Perturbation Methods in Fluid Mechanics, Applied Mathematics and Mechanics, 8, 1964.

[17]

M. J. Ward and J. Wei, Hopf bifurcation of spike solutions for the shadow Gierer-Meinhardt model, Europ. J. Appl. Math., 14 (2003), 677-711.  doi: 10.1017/S0956792503005278.

[18]

M. J. Ward and J. Wei, Hopf bifurcation and oscillatory instabilities of spike solutions for the one-dimensional Gierer-Meinhardt model, J. Nonlinear Science, 13 (2003), 209-264.  doi: 10.1007/s00332-002-0531-z.

[19]

J. Wei, On single interior spike solutions for the Gierer-Meinhardt system: Uniqueness and stability estimates, Europ. J. Appl. Math., 10 (1999), 353-378.  doi: 10.1017/S0956792599003770.

[20]

J. Wei, Existence and stability of spikes for the Gierer-Meinhardt system, book chapter in Handbook of Differential Equations, Stationary Partial Differential Equations, Vol. 5 (M. Chipot ed.), Elsevier, (2008), 489–585. doi: 10.1016/S1874-5733(08)80013-7.

[21]

J. Wei and M. Winter, Spikes for the two-dimensional Gierer-Meinhardt system: The weak coupling case, J. Nonlinear Sci., 11 (2001), 415-458.  doi: 10.1007/s00332-001-0380-1.

Figure 1.  Left: Plot of the one-spike stable equilibrium solution $ a $ (blue curve) and $ h $ (red curve) for the model in (2) with delay in the inhibitor equation. Right: Plot of the trajectory $ x_0(\tau) $ for the center of the spike. The dotted curve is the full numerical simulation obtained from (2), and the solid curve is the asymptotic result as obtained from (21), with delay in the non-linear term of the inhibitor equation. Parameter values used are $ T = 0.1 $, $ \epsilon = 0.06 $, $ \mu = 1 $, $ L = 1 $ and $ D = 1 $
Figure 2.  Left: Plot of the one-spike stable equilibrium solution $ a $ (solid curve) and $ h $ (dotted curve) for the model in (22), with delay in the $ h $ term of the activator equation. Right: Plot of the trajectory $ x_0(\tau) $ for the center of the spike. The dotted curve is the full numerical simulation obtained from (22), and the solid curve is the asymptotic result as obtained from (30), with delay in the $ h $ term of the activator equation. Parameter values used are $ T = 0.1 $, $ \epsilon = 0.06 $, $ \mu = 1 $, $ L = 1 $ and $ D = 1 $
Figure 3.  Left: Plot of the one-spike stable equilibrium solution $ a $ (solid curve) and $ h $ (dotted curve) for the model in (31), with delay in both the activator regulation and inhibitor production. Right: Plot of the trajectory $ x_0(\tau) $ for the center of the spike. The dotted curve is the full numerical simulation obtained from (31), and the solid curve is the asymptotic result as obtained from (35), with delay in the $ h $ term of the activator equation. Parameter values used are $ T = 0.1 $, $ \epsilon = 0.06 $, $ \mu = 1 $, and $ D = 1 $
Figure 4.  Left: Plot of the one-spike stable equilibrium solution $ a $ (solid curve) and $ h $ (dotted curve) for the model in (36), where the nonlinear term of the activator equation is delayed. Right: Plot of the trajectory $ x_0(\tau) $ for the center of the spike. The dotted curve is the full numerical simulation obtained from (36), and the solid curve is the asymptotic result as obtained from (49). Parameter values used are $ T = 0.1 $, $ \epsilon = 0.06 $, $ \mu = 1 $, $ L = 1 $ and $ D = 1 $
Figure 5.  Left: Plot of the one-spike stable equilibrium solution $ a $ (solid curve) and $ h $ (dotted curve) for the model in (50), where all the nonlinear terms are delayed. Right: Plot of the trajectory $ x_0(\tau) $ for the center of the spike. The dotted curve is the full numerical simulation obtained from (50), and the solid curve is the asymptotic result as obtained from (51). Parameter values used are $ T = 0.1 $, $ \epsilon = 0.06 $, $ \mu = 1 $, $ L = 1 $ and $ D = 1 $
Figure 6.  Plot of the motion of the center of the spike as obtained from the asymptotic ODE (21), with delay in the inhibitor equation. Increasing values of the delay $ T $ were used, and initial points as indicated. There are no oscillations in this case, and the equilibrium position $ x_0 = 0.5 $ is always stable. Parameters used are $ \epsilon = 0.06 $, $ \mu = 1 $, and $ D = 1 $
Figure 7.  Solutions of (64) for various values of $ L $
Figure 8.  Plot of the asymptotic result $ x_0(t) $ as obtained from (30), with delay in the $ h $ term of the activator equation, for delay $ T = 1.7<T_H $ (left figure) and $ T = 1.9>T_H $ (right figure). Parameters used are $ \epsilon = 0.06 $, $ \mu = 1 $, $ L = 2 $ and $ D = 1 $
Figure 9.  Solutions of (68) for a range of $ L $
Figure 10.  Plot of the asymptotic result $ x_0(t) $ as obtained from (35), where delay is in both the activator and inhibitor equations, for delay values $ T_1 = 1.3 $ (feft figure) and $ T_1 = 1.45 $ (right figure). Parameters used are $ \epsilon = 0.06 $, $ \mu = 1 $, $ L = 2 $ and $ D = 1 $
Figure 11.  Plot of trajectories corresponding to motion of the spike as obtained from the asymptotic ODE (49), with increasing values of delay in the non-linear term of the activator equation, and using various initial points as indicated. No oscillations are observed and all trajectories approach the stable equilibrium position $ x_0 = 0.5 $. Parameters used are $ \epsilon = 0.06 $, $ \mu = 1 $, and $ D = 1 $
Figure 12.  Solution to (85) for various values of $ L $
Figure 13.  Amplitude of spike solution to (2) for delay below and above the critical value of $ T_H = 0.519 $. Here $ D = 1 $, $ \mu = 1 $, $ L = 1 $ and $ \varepsilon = 0.06 $
Figure 14.  Amplitude of spike solution to (31) for delay below and above the critical value of $ T_H\sim0.25 $. Here $ D = 1 $, $ \mu = 1 $, $ L = 1 $ and $ \varepsilon = 0.06 $
Figure 15.  Plot of $ Re(\lambda_0) $ versus $ Im(\lambda_0) $ for the eigenvalue of matrix $ \mathcal{M} $. In figure (a), the red curve follows $ T = 0 $ to 0.6. Black from 0.6 to 1.4, blue form 1.4 to 1.6 and green 1.6 to 2.2
Figure 16.  Simulations of (99) with $ D = 1 $, $ \mu = 1 $, $ L = 1 $. In 16(a), $ T = .9 $ and in 16(b), $ T = 1.04 $. Time is plotted on the horizontal axis and $ x_0 $ is plotted on the vertical axis
[1]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[2]

Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304

[3]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

[4]

Juraj Kováč, Václav Klika. Liouville-Green approximation for linearly coupled systems: Asymptotic analysis with applications to reaction-diffusion systems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (9) : 2553-2579. doi: 10.3934/dcdss.2022133

[5]

Yangyang Shi, Hongjun Gao. Homogenization for stochastic reaction-diffusion equations with singular perturbation term. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2401-2426. doi: 10.3934/dcdsb.2021137

[6]

Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526

[7]

Jihoon Lee, Vu Manh Toi. Attractors for a class of delayed reaction-diffusion equations with dynamic boundary conditions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3135-3152. doi: 10.3934/dcdsb.2020054

[8]

Yuncheng You. Asymptotic dynamics of reversible cubic autocatalytic reaction-diffusion systems. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1415-1445. doi: 10.3934/cpaa.2011.10.1415

[9]

Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic and Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427

[10]

Sven Jarohs, Tobias Weth. Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2581-2615. doi: 10.3934/dcds.2014.34.2581

[11]

Huimin Liang, Peixuan Weng, Yanling Tian. Threshold asymptotic behaviors for a delayed nonlocal reaction-diffusion model of mistletoes and birds in a 2D strip. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1471-1495. doi: 10.3934/cpaa.2016.15.1471

[12]

Ricardo Enguiça, Andrea Gavioli, Luís Sanchez. A class of singular first order differential equations with applications in reaction-diffusion. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 173-191. doi: 10.3934/dcds.2013.33.173

[13]

Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1757-1774. doi: 10.3934/dcdsb.2020001

[14]

Yuxiao Guo, Ben Niu. Bautin bifurcation in delayed reaction-diffusion systems with application to the segel-jackson model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6005-6024. doi: 10.3934/dcdsb.2019118

[15]

Yicheng Jiang, Kaijun Zhang. Stability of traveling waves for nonlocal time-delayed reaction-diffusion equations. Kinetic and Related Models, 2018, 11 (5) : 1235-1253. doi: 10.3934/krm.2018048

[16]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[17]

Jan-Phillip Bäcker, Matthias Röger. Analysis and asymptotic reduction of a bulk-surface reaction-diffusion model of Gierer-Meinhardt type. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1139-1155. doi: 10.3934/cpaa.2022013

[18]

Tarik Mohammed Touaoula, Mohammed Nor Frioui, Nikolay Bessonov, Vitaly Volpert. Dynamics of solutions of a reaction-diffusion equation with delayed inhibition. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2425-2442. doi: 10.3934/dcdss.2020193

[19]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4867-4885. doi: 10.3934/dcdsb.2020316

[20]

Shuichi Jimbo, Yoshihisa Morita. Asymptotic behavior of entire solutions to reaction-diffusion equations in an infinite star graph. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4013-4039. doi: 10.3934/dcds.2021026

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (77)
  • HTML views (55)
  • Cited by (0)

Other articles
by authors

[Back to Top]